Mesoporous Ce-doped Ti:Ash Photocatalyst Investigation in Visible Light Photocatalytic Water Pretreatment Process

Abdulkarim Abdulrahman Mohamed Suliman  -  Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Malaysia
*Ruzinah Isha scopus  -  Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Malaysia
Mazrul Nizam Abu Seman  -  Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Malaysia
Abdul Latif Ahmad  -  School of Chemical Engineering, Universiti Sains Malaysia, Malaysia
Jamil Roslan  -  Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Malaysia
Received: 10 Jan 2020; Revised: 3 Apr 2020; Accepted: 4 Apr 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The treatment of organic pollutants in water including semiconductor photocatalysis is a promising approach to disinfect water. The objective of this study is to investigate the effect of Ce loaded on mesoporous Ti:Ash catalyst for water pretreatment process. The mesoporous Ti:Ash catalyst that doped with Ce was synthesized through wet impregnation method with 5%, 10%, and 15% weight percentage of Ce doped on 40:60 Ti:Ash. The photocatalytic properties were characterized through X-ray powder diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2 adsorption-desorption studies and diffuse reflectance UV–vis absorption spectroscopy. It is found that the Ti:Ash nanocomposites doped with Ce shifted the light absorption band-edge position to the visible region. Moreover, the Ce doped Ti:Ash has large surface area and pore diameter. The Ce doping could significantly improve the absorption edge of visible light and adjust the cut-off absorption wavelength from 404 nm to 451, 477 and 496 nm for 5%, 10% and 15% Ce-doped mesoporous Ti:Ash catalysts, respectively. As the Ce doping ratio increased, the band gaps decreased from 3.06 eV to 2.53 eV. The most contaminant reduction up to 45% was achieved when Ti:Ash:Ce 40:55:5 was used. Higher Ce loading on the photocatalyst may reduce the photocatalyst performance because supernumerary metal loading on TiO2 can block TiO2 defect sites which are necessary for the adsorption and photoactivation. The OPFA also acts as an adsorbent for some pollutants besides, reducing the water salinity. It can be deduced that the hybrid TiO2 photocatalyst that synthesized with OPFA and doped with Ce has huge potential to treat seawater prior to commercial seawater desalination process. Copyright © 2020 BCREC Group. All rights reserved


Keywords: Cerium; Humic acid; Palm oil fiber ash; Photocatalysis; Titanium dioxide; seawater pretreatment;

Article Metrics:

  1. Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R. (2012). The use of date palm as a potential adsorbent for wastewater treatment: a review. Environmental Science and Pollution Research, 19, 1464-1484. DOI: 10.1007/s11356-011-0709-8
  2. Abdullah, N., Sulaiman, F. (2013). The oil palm wastes in Malaysia, in Biomass Now-Sustainable Growth and Use, ed: InTech.
  3. Aman, N., Mishra, T., Sahu, R.K., Tiwari, J.P. (2010). Facile synthesis of mesoporous N doped zirconium titanium mixed oxide nanomaterial with enhanced photocatalytic activity under visible light. Journal of Materials Chemistry, 20, 10876-10882. DOI: 10.1039/C0JM01342K
  4. Andayani, W., Bagyo, A.N. (2011). TiO2 bead for hotocatalytic degradation of humic acid in peat water R. Indonesian Journal of Chemistry, 11, 253-257.
  5. Chen, C., Ma, W., Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39, 4206-4219. DOI: 10.1039/B921692H
  6. Cheng, Y., Zhang, M., Yao, G., Yang, L., Tao, J., Gong, Z. (2016). Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method. Journal of Alloys and Compounds, 662, 179-184. DOI: 10.1016/j.jallcom.2015.12.034
  7. Fiorenza, R., Bellardita, M., Barakat, T., Scirè, S., Palmisano, L. (2018). Visible light photocatalytic activity of macro-mesoporous TiO2-CeO2 inverse opals. Journal of Photochemistry and Photobiology A: Chemistry, 352, 25-34. DOI: 10.1016/j.jphotochem.2017.10.052
  8. Ibhadon, A.O., Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3, 189-218. DOI: 10.3390/catal3010189
  9. Isha, R., Roslan, J., Suliman, A. (2018). Effect of mass ratio of titanium dioxide and oil palm fiber ash (TiO2:Ash) in hybrid photocatalyst on photocatalytic seawater pretreatment. In: Proceedings of The National Conference for Postgraduate Research (NCON-PGR 2018), 124-132.
  10. Jia, H., Zhao, S., Shi, Y., Zhu, L., Wang, C., Sharma, V.K. (2018). Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties. Environmental Science & Technology, 52, 5725-5733. DOI: 10.1021/acs.est.8b00425
  11. Kan, W.E., Isha, R. (2016). The effect of light wavelength on water quality in photocatalytic seawater pre-treatment. In: Proceedings of The National Conference for Postgraduate Research (NCON-PGR 2016). 89-94.
  12. Kan, W.E., Roslan, J., Isha, R. (2016). Effect of Calcination temperature on performance of photocatalytic reactor system for seawater pretreatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11(2), 230-237. DOI: 10.9767/bcrec.11.2.554.230-237
  13. Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Lee, J., Cho, M.H. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2, 637-644. DOI: 10.1039/C3TA14052K
  14. Khan, M.R., Chuan, T.W., Yousuf, A., Chowdhury, M., Cheng, C.K. (2015). Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catalysis Science & Technology, 5, 2522-2531. DOI: 10.1039/C4CY01545B
  15. Kharel, P.L., Cuillier, P.M., Fernando, K., Zamborini, F.P., Alphenaar, B.W. (2018). Effect of Rare-Earth Metal Oxide Nanoparticles on the Conductivity of Nanocrystalline Titanium Dioxide: An Electrical and Electrochemical Approach. The Journal of Physical Chemistry C, 122, 15090-15096. DOI: 10.1021/acs.jpcc.8b02971
  16. Liu, J., Li, H., Li, Q., Wang, X., Zhang, M., Yang, J. (2014). Preparation of cerium modified titanium dioxide nanoparticles and investigation of their visible light photocatalytic performance. International Journal of Photoenergy, 2014, 9. DOI: 10.1155/2014/695679
  17. Liu, L., Ji, Z., Zou, W., Gu, X., Deng, Y., Gao, F. (2013). In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. Acs Catalysis, 3, 2052-2061. DOI: 10.1021/cs4002755
  18. Matějová, L., Kočí, K., Reli, M., Čapek, L., Hospodková, A., Peikertová, P. (2014). Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Applied Catalyst B: Environmental, 152, 172-183. DOI: 10.1016/j.apcatb.2014.01.015
  19. Liu, Z., Guo, B., Hong, L., Jiang, H. (2005). Preparation and characterization of cerium oxide doped TiO2 nanoparticles. Journal of Physics and Chemistry of Solids, 66, 161-167. DOI: 10.1016/j.jpcs.2004.09.002
  20. Myilsamy, M., Murugesan, V., Mahalakshmi, M. (2015). Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity. Applied Catalysis A: General, 492, 212-222. DOI: 10.1016/j.apcata.2014.12.035
  21. Ndinda, E., Park, H., Kim, K.N. (2014). Preparation and characterization of cerium doped titanium dioxide nano powder for photocatalyst. Korean Journal of Materials Research, 24, 33-36. DOI: 10.3740/MRSK.2014.24.1.33
  22. Ng, K.H., Lee, C.H., Khan, M.R., Cheng, C.K. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering, 286, 282-290. DOI: 10.1016/j.cej.2015.10.072
  23. Niu, B., Wang, X., Wu, K., He, X., Zhang, R. (2018). Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology. Materials, 11, 1910. DOI: 10.3390/ma11101910
  24. Aman, N., Satapathy, P., Mishra, T., Mahato, M., Das, N. (2012). Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Materials Research Bulletin, 47, 179-183.
  25. Makdee, A., Unwiset, P., Chanapattharapol, K.C., Kidkhunthod, P. (2018). Effects of Ce addition on the properties and photocatalytic activity of TiO2, investigated by X-ray absorption spectroscopy, Materials Chemistry and Physics, 213, 431-443.
  26. Devi, L.G., Anitha, B. (2019). Effective band gap engineering by the incorporation of Ce, N and S dopant ions into the SrTiO3 lattice: exploration of photocatalytic activity under UV/solar light. Journal of Sol-Gel Science and Technology, 94, 50-66. DOI: 10.1007/s10971-019-05074-4
  27. Zheng, R.R., Li, T.T., Yu, H. (2008) Construction of Indium and Cerium Codoped Ordered Mesoporous TiO2 Aerogel Composite Material and Its High Photocatalytic Activity. Global Challenges, 2, 700118.
  28. Poulios, I., Micropoulou, E., Panou, R., Kostopoulou, E. (2003). Photooxidation of eosin Y in the presence of semiconducting oxides. Applied Catalysis B: Environmental, 41, 345-355. DOI: 10.1016/S0926-3373(02)00160-1
  29. Xu, A.W., Gao, Y., Liu, H.Q. (2002). The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis, 207, 151-157. DOI: 10.1006/jcat.2002.3539
  30. Zhu, L., Jo, S.B., Ye, S., Ullah, K., Oh, W.C. (2014). Fabrication of ZnO and TiO2 Combined Activated Carbon Nanocomposite and Adsorption Enhanced Synergetic Photocatalytic Effects. Asian Journal of Chemistry, 26, 1829-1832. DOI: 10.14233/ajchem.2014.15562
  31. Tong, T., Zhang, J., Tian, B., Chen, F., He, D., Anpo, M. (2007). Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of colloid and interface science, 315, 382-388. DOI: 10.1016/j.jcis.2007.06.051
  32. Polliotto, V., Albanese, E., Livraghi, S., Agnoli, S., Pacchioni, G., Giamello, E. (2018). Structural, electronic and photochemical properties of cerium-doped zirconium titanate. Catalysis Today, 340, 49-57. DOI: 10.1016/j.cattod.2018.09.026
  33. Tan, I., Ahmad, A., Hameed, B. (2008). Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 225, 13-28.
  34. Hameed, B., El-Khaiary, M. (2008). Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154 (1–3), 237-244. DOI: 10.1016/j.jhazmat.2007.10.017
  35. Ahmad, T., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R. (2011) Oil palm biomass–Based adsorbents for the removal of water pollutants - A review. Journal of Environmental Science and Health, Part C, 177-222.
  36. Adebisi, G.A., Chowdhury, Z.Z., Alaba, P.A. (2017). Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. Journal of Cleaner Production, 148, 958-968. DOI: 10.1016/j.jclepro.2017.02.047
  37. Jia, Q., Lua, A.C. (2008). Concentration-dependent branched pore kinetic model for aqueous phase adsorption. Chemical Engineering Journal, 136, 227-235.
  38. Patsios, S., Sarasidis, V., Karabelas, A. (2013). A hybrid photocatalysis–ultrafiltration continuous process for humic acids degradation. Separation and Purification Technology, 104, 333-341, DOI: 10.1016/j.seppur.2012.11.033
  39. Yusof, M.A.M., Seman, M.N.A., Nizam, M. (2016). Polyamide Forward Osmosis Membrane: Synthesis, Characterization and Its Performance for Humic Acid Removal. Journal of Membrane Science and Research, 2 (2), 90-94. DOI: 10.22079/JMSR.2016.19156
  40. Haysahi, K.i., Shibata, H., Yui, M., Ohmoto, H. (2001). Experimental Study Assessing the Role of Sedimentary Organic Materials to Control the Redox State of Ground Materials to Control the Redox State of Groundwater: Consumption of Dissolved Oxygen by Humic Acid. Resource Geology, 51 (1), 45-54. DOI: 10.1111/j.1751-3928.2001.tb00080.x
  41. Szymański, K., Morawski, A.W., Mozia, S. (2016). Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 305, 19-27. DOI: 10.1016/j.cej.2015.10.024
  42. Al-Faiyz, Y.S. (2017). CPMAS 13C NMR characterization of humic acids from composted agricultural Saudi waste. Arabian Journal of Chemistry, 10, S839-S853. DOI: 10.1016/j.arabjc.2012.12.018
  43. Wang, W.X., Onsanit, S., Dang, F. (2012). Dietary bioavailability of cadmium, inorganic mercury, and zinc to a marine fish: Effects of food composition and type. Aquaculture, 356–357, 98-104. DOI: 10.1016/j.aquaculture.2012.05.031
  44. Rasidi, R., Jusadi, D., Setiawati, M., Yuhana, M., Zairin, Jr.M., Sugama, K. (2019). Response to Humic Acid Addition Into Feeds with Heavy Metal Content Made of Green Mussels on Growth of Asian Seabass. Biotropia, 26(3). DOI: 10.11598/btb.2019.26.3.1114
  45. Yang, L., Liu, G., Zheng, M., Jin, R., Zhao, Y., Wu, X. (2017). Pivotal roles of metal oxides in the formation of environmentally persistent free radicals. Environmental science & technology, 51, 12329-12336.
  46. Shan, Z., Wu, J., Xu, F., Huang, F.Q., Ding, H. (2008). Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. The Journal of Physical Chemistry C, 112, 15423-15428. DOI: 10.1021/jp804482k
  47. Tian, Y., Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127, 7632-7637. DOI: 10.1021/ja042192u
  48. Pang, Y.L., Abdullah, A.Z. (2013). Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water. Chemical Engineering Journal, 214, 129-138. DOI: 10.1016/j.cej.2012.10.036
  49. Shi, Z.L., Du, C., Yao, S.H. (2011). Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite. Journal of the Taiwan Institute of Chemical Engineers, 42, 652-657. DOI: 10.1016/j.jtice.2010.10.001
  50. Silva, A.M., Silva, C.G., Dražić, G., Faria, J.L. (2009). Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today, 144, 13-18. DOI: 10.1016/j.cattod.2009.02.022
  51. Tbessi, I., Benito, M., Molins, E., LIorca, J., Touati, A., Sayadi, S. (2019). Effect of Ce and Mn co-doping on photocatalytic performance of sol-gel TiO2. Solid State Sciences, 88, 20-28. DOI: 10.1016/j.solidstatesciences.2018.12.004

No citation recorded.