skip to main content

UV Irradiation and Ozone Treatment of κ-Carrageenan: Kinetics and Products Characteristics

Department of Chemical Engineering, Diponegoro University, Indonesia

Received: 10 Jan 2020; Revised: 9 Mar 2020; Accepted: 13 Mar 2020; Available online: 30 Jul 2020; Published: 1 Aug 2020.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The low molecular weight (LMW) of sulfated polysaccharides including k-carrageenan, is shows a wide spectrum of biological activities. This research investigates the influence of UV irradiation, ozone (O3), and the combination of O3/UV methods on the depolymerization of k-carrageenan. The depolymerization kinetics of k-carrageenan using the Advanced Oxidation Process (UV/O3) was also studied. Furthermore, the intrinsic viscosity method was used to determine the average molecular weight of the research sample, and a mathematical model was developed to predict the kinetic rate constant, as a function of ozone dosage and UV irradiation intensity. Therefore, the physicochemical and morphological properties of the degraded k-carrageenan were analyzed by FT-IR, SEM, and XRD. The intrinsic viscosity k-carrageenan decreases with increasing UV light intensity and ozone concentration. The combination of UV/O3 treatment appeared to be more effective than the individual approaches, as the highest kinetic rate constant for depolymerization was 1.924×10-4 min-1, using 125 mg/L ozone concentration and 40 mW/cm2 of UV lamp intensity. This research also evaluated the relationship between various experimental conditions, including UV lamp power dissipation and ozone concentration on the reaction kinetics model, and the results suggest that lower effect is contributed by UV irradiation intensity. In addition, FT-IR spectra showed the absence of any significant change in the functional properties of k-carrageenan treated with UV and O3 processes, although the morphological properties of the LMW k-carrageenan were rougher and more porous than the native k-carrageenan. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: κ-carrageenan; UV irradiation;ozone; depolymerization.
Funding: Kemenristekdikti Republic of Indonesia under contract Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)

Article Metrics:

  1. Van de Velde, F., Lourenco, N.D., Pinheiro, H.M., Bakker, M. (2002). Carrageenan : A Food-Grade and Biocompatible Support for Immobilisation Techniques. Advanced Synthesis and Catalyst, 344(8), 815-835. DOI: 10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H
  2. Liu, S., Chan, W.L., Li, L. (2015). Rheological Properties and Scaling Laws of κ‑Carrageenan in Aqueous Solution. Macromolecules, 48(20), 7649-7657. DOI: 10.1021/acs.macromol.5b01922
  3. Yuan, H., Song, J. (2011). Preparation, Structural Characterization and in Vitro Antitumor Activity of kappa-Carrageenan Oligosaccharide Fraction from kappaphycus striatum. Journal of Applied Phycology, 17(1), 7-13. DOI: 10.1007/s10811-005-5513-8
  4. Sun, Y., Yang, B., Wu, Y., Liu, Y., Gu, X., Zhang, H., Wang, C., Cao, H., Huang, L., Wang, Z. (2015). Structural Characterization and Antioxidant Activities of κ-Carrageenan Oligosaccharides Degraded by Different Methods. Food Chemistry, 178, 311-318. DOI: 10.1016/j.foodchem.2015.01.105
  5. Wang, W., Zhang, P., Yua, G.L., Li, C.X., Hao, C., Qi, X., Zhang, L.J., Guan, H.S. (2012). Preparation and Anti-Influenza A Virus Activity of κ-Carrageenan Oligosaccharide and Its Sulphated Derivatives. Food Chemistry, 133(3), 880-888. DOI: 10.1016/j.foodchem.2012.01.108
  6. Kalitnik, A.A., Barabanova, A.O.B., Nagorkaya, V.P., Reunov, A.V., Glazunov, V.P., Solov’eva, T.F., Yermak, I.M. (2013). Low Molecular Weight Derivatives of Different Carrageenan Types and their Antiviral Activity. Journal of Applied Phycology, 25(1), 65-72. DOI: 10.1007/s10811-012-9839-8
  7. Yermak, I.M., Barrabanova, A.O., Aminin, D.L., Davydova, V.N., Sokolova, E.V., Solo’eva, T.F., Kim, Y.H., Shin, K.S. (2012). Effect of Structural Peculiarities of Carrageenan on Their Immunomodulatory and Anticoagulant Activities. Carbohydrate Polymers, 87, 713-720. DOI: 10.1016/j.carbpol.2011.08.053
  8. Lai, V.M.F., Lii, C.Y., Hung, W.L., Lu, T.J. (2000). Kinetic Compensation Effect in Depolymerization of Food Polysaccharides. Food Chemistry, 68(3), 319-325. DOI: 10.1016/S0308-8146(99)00198-3
  9. Wu, S.J. (2012). Degradation of κ- Carrageenan by Hydrolysis with Commercial α-Amylase. Carbohydrate Polymers, 89, 394-396. DOI: 10.1016/j.carbpol.2012.03.019
  10. Duan, F., Yu, Y., Liu, Z., Tian, L., Mou, H. (2016). An Effective Method for the Preparation of Carrageenan Oligosaccharides Directly from Eucheuma cottonii using Cellulase and Recombinant κ-Carrageenase. Algal Research, 15, 93-99. DOI: 10.1016/j.algal.2016.02.006
  11. Zhou, G., Yao, W., Wang, C. (2006). Kinetics of Microwave Degradation of λ-Carrageenan from Chondrus Ocellatus. Carbohydrate Polymers, 64, 73-77. DOI: 10.1016/j.carbpol.2005.10.023
  12. Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11, 48-58. DOI: 10.9767/bcrec.11.1.415.48-58
  13. Taghizadeh, M.T., Abdollahi, R. (2015). Influence of Different Degradation Techniques on the Molecular Weight Distribution of κ- Carrageenan. International Journal of Biochemistry and Biophysics, 3, 25-33. DOI: 10.13189/ijbb.2015.030301
  14. Abad, L.V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fub, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L.S., Aranilla, C.T., DeLaRosa, A.M. (2010). Radiolysis Studies of Aqueo κ-Carrageenan. Nuclear Instruments and Methods in Physics Research Section B, 268(10), 1607-1612. DOI: 10.1016/j.nimb.2010.02.006
  15. Zu´n˜iga, E.A., Matsuhiro, Betty., Mejı´as, E. (2006). Preparation of A Low-Molecular Weight Fraction by Free Radical Depolymerization of The Sulfated Galactan from Schizymenia Binderi (Gigartinales, Rhodophyta) and Its Anticoagulant Activity. Carbohydrate Polymers, 66, 208-215. DOI : 10.1016/j.carbpol.2006.03.007
  16. Prajapat, A.L., Gogate, P.R. (2015). Intensification of Degradation of Guar Gum: Comparison of Approaches Based on Ozone, Ultraviolet and Ultrasonic Irradiations. Chemical Engineering And Process, 98, 165–173. DOI: 10.1016/j.cep.2015.09.018
  17. Yue, W., Yao, P., Wei, Y., Mo, H. (2008). Synergetic Effect of Ozone and Ultrasounic Radiation on Degradation of Chitosan. Polymer Degradation and Stability, 93, 1814-1821. DOI: 10.1016/j.polymdegradstab.2008.07.010
  18. Guirguis, O.W., El-Bassyouni, G.T., Esawy, M.A., Abd Elkader, N.R., Mahmoud, H.M., Mostafa, H.M., Abdel-Zaher, N.A. (2016). Exposure of Chitosan to UV/ozone: Structural Information and Antibacterial Activity. Journal of Applied Pharmaceutical Science, 6(12), 124-130. DOI: 10.7324/JAPS.2016.601217
  19. Wang, Y., Li, H., Yi, P., Zhang, H. (2019). Degradation of Clofibric Acid by UV, O3 and UV/O3 Process: Performance Comparison and Degradation Pathways. Journal of Hazardous Materials, 379, 001-011. DOI: 10.1016/j.jhazmat.2019.120771
  20. Chen, Z., Fang, J., Chihhao, F., Shang, C. (2016). Oxidative Degradation of N-nitrosopyrrolidine by The Ozone/UV Process: Kinetics and Pathways. Chemosphere, 150, 731-739. DOI: 10.1016/j.chemosphere.2015.12.046
  21. Dai, Q., Chen, L., Chen, W., Chen, J. (2015). Degradation and Kinetics of Phenoxyacetic Acid in Aqueous Solution by Ozonation. Separation and Purification Technology, 142, 287-292. DOI: 10.1016/j.seppur.2014.12.045
  22. Pawar, I.A., Joshi, P.J., Kadam, A.D., Pande, N.B., Kamble, P.H., Hinge, S.P., Benerjee, B.S., Mohod, A.V., Gogate, P.R.. (2014). Ultrasound-based Treatment Approaches for Intrinsic Viscosity Reduction of Polyvinyl Pyrrolidone (PVP). Ultrasonic Sonochemical, 21, 1108–1116. DOI: 10.1016/j.ultsonch.2013.12.013
  23. Marimuthu, A., Madras, G. (2008). Photocatalytic Oxidative Degradation of Poly (alkyl acrylates) with NanoTiO2. Industrial and Engineering Chemistry Research, 47, 2182-2190. DOI: 10.1021/ie0712939
  24. Hamad, D., Mehrvar, M., Dhib, R. (2014). Experimental Study of Polyvinyl Alcohol Degradation in Aqueous Solution by UV/H2O2 Process. Polymer Degradation and Stability, 103, 75-82. DOI: 10.1016/j.polymdegradstab.2014.02.018
  25. Prasetyaningrum, A., Jos, B., Ratnawati, R. (2017). Effect of Ozonation Process on Physicochemical and Rheological Properties of κ‑Carrageenan. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18(1), 009-018
  26. Oh, B.S., Kim, K.S., Kang, M.G., Oh, J.H., Kang, J.W. (2005). Kinetic Study and Optimum control of the ozone/UV process measuring hydrogen peroxide formal in-situ. Ozone: Science and Engineering, 27, 421-430. DOI: 10.1080/01919510500349234
  27. Mzoughi, Z., Chakroun, I., Hamida, S.B., Rihouey, C., Mansour, H.B., Cerf, D.L., Majdoub, H. (2017). Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity. Biological Macromolecules, 105, 1315–1323. DOI: 10.1016/j.ijbiomac.2017.07.151
  28. Tiwari, B.K., Muthukumarappan, K., O’Donnell, C.P., Chenchaiah, M., Cullen,P.J. (2008). Effect of Ozonation on The Rheological and Colour Characteristics of Hydrocolloid Dispersions. Food Research International, 41, 1035-1043. DOI: 10.1016/j.foodres.2008.07.011
  29. Chan, H.T., Leh, C.P., Bhat, R., Senan, C., Williams, P.A., Karim, A.A. (2011). Molecular Structure, Rheological and Thermal Characteristics of Ozone-oxidized Starch. Food Chemistry, 126, 1019-1024. DOI: 10.1016/j.foodchem.2010.11.113
  30. Cataldo, F. (2007). On The Action of Ozone on Gelatin. International Journal of Biological Macromolecules, 41(2), 210-216. DOI: 10.1016/j.ijbiomac.2007.02.008
  31. Peyton, G.R., Glaze, W.H. (1988). Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 3. Photolysis of Aqueous Ozone. Enviromental Science Technology, 22, 761-767. DOI: 10.1021/es00172a003
  32. Rao, Y.F., Chu, W. (2009). A New Approach to Quantify the Degradation Kinetics of Linuron with UV, Ozonation and UV/O3 Processes. Chemosphere, 74, 1444-1449. DOI: 10.1016/j.chemosphere.2008.12.012
  33. Tanford, C. (1961). Phisical Chemistry of Macromolecules. Edition. New York: John Wiley and Sons, Inc
  34. Tajo, E., Prado, J. (2003). Chemical Composition of Carrageenan Blends Determined by IR Spectroscopy Combined with a PLS Multivariate Calibration Method. Carbohydrate Research, 338, 1309-1312. DOI: 10.1016/S0008-6215(03)00144-7
  35. Prasetyaningrum, A., Ratnawati, R., Jos, Bakti. (2017). Kinetics of Oxidation Depolymerization of κ-carrageenan by Ozone. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 235-242. DOI: 10.9767/bcrec.12.2.805.235-242
  36. Benitez, F.J., Beltran-Heredia, J., Gonzales, T. (1994). Degradation By Ozone and UV Radiation of The Herbicide Cyanazine. Ozone: Science and Engineering: The Journal of The International Ozone Associatio, 16 (3), 213-234. DOI: 10.1080/01919519408552499
  37. Yue, W., He, R., Yao, P., Wei, Y. (2009). Ultraviolet Radiation-induced Accelerated Degradation of Chitosan by Ozone Treatment. Carbohydrate Polymers, 77(3), 639-642
  38. Li, J., Cai, J., Fan, L. (2008). Effect of Sonolysis on Kinetics and Physicochemical Properties of Treated Chitosan. Journal of Applied Polymer Science, 109, 2417-2425. DOI: 10.1002/app.28339
  39. Prasetsung, S. Damrongsakkul, N. Saito. (2013). Degradation of b-chitosan by Solution Plasma Process (SPP). Polymer Degradation and Stability, 98, 2089-2093. DOI: 10.1016/j.polymdegradstab.2013.07.001
  40. Fojas, J.J.R., De Leon, R.L., Abad, L.V. (2013). Effect of Irradiation to Morphological. Physicochemical and Biocompatibility Properties of Carrageenan, International Journal Biotechnology and Bioengineering, 7(5), 320-323. DOI: 10.5281/zenodo.1073397
  41. Shahbazi, M., Rajabzadeh, G., Ettelaie, R., and Rafe, A. (2016). Kinetic Study Of Rm kappa-Carrageenan Degradation And Its Impact On Mechanical And Structural Properties Of Chitosan/Rm kappa-Carrageenan Film. Carbohydrate Polymers, 142, 167-176. DOI: 10.1016/j.carbpol.2016.01.037

Last update:

No citation recorded.

Last update:

No citation recorded.