Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, B.P 270, Route de Soumaa, 09000 Blida, Algeria
BibTex Citation Data :
@article{BCREC6999, author = {Issma Labib and Hocine Boutoumi and Hussein Khalaf}, title = {Synergistic Effect of Microwave Calcination and Sonophotocatalytic Activity of TiO2-Montmorillonite on The Degradation of Direct Yellow 106 and Disperse Violet 1}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {15}, number = {2}, year = {2020}, keywords = {TiO2-Montmorillonite; microwave calcinations; Sonophotocatalysis; Direct Yellow 106; Disperse Violet 1}, abstract = { The TiO 2 -pillared montmorillonite nanoparticles (TiO 2 -Mt) were prepared by the sol-gel method, then applied for the elimination of dyes in solution: CI Direct Yellow 106 (DY106) (azo dye) and CI Disperse Violet 1 (DV1) (anthraquinone dye) by the sonocatalytic, photocatalytic and sonophotocatalytic processes, in order to test the efficiency of photocatalysts, while photolysis, sonolysis, and sonophotolysis tests have been done previously. The photocatalysts (TiO 2 -Mt) were characterized by X-ray Diffraction (XRD), X-ray Fluorescence analysis (XRF), Brunauer-Emmet-Teller (BET), Scanning Electron Microscopy (SEM) methods, thermal and thermogravimetric analysis (TG/DTA) and the zero load point (pH pzc ). Aqueous solutions of dye of an initial concentration (50 mg/L), in the presence of 1 g/L of photocatalyst, were irradiated using a mercury lamp (Hg) of 40 Mw/cm 2 and put in contact with an ultrasonic probe with a frequency of 20 kHz and a power of 750 W, providing the ultrasound. The results obtained indicate that a weak, good and better dye degradation rate has been observed successively by the application of the sonocatalytic, photocatalytic and sonophotocatalytic processes, where the latter has shown a synergistic effect, while the photocatalyst TiO 2 -Mt/MW showed significant efficiency during the degradation, due to the beneficial effect of the microwave calcination mode. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {304--318} doi = {10.9767/bcrec.15.2.6999.304-318}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/6999} }
Refworks Citation Data :
The TiO2-pillared montmorillonite nanoparticles (TiO2-Mt) were prepared by the sol-gel method, then applied for the elimination of dyes in solution: CI Direct Yellow 106 (DY106) (azo dye) and CI Disperse Violet 1 (DV1) (anthraquinone dye) by the sonocatalytic, photocatalytic and sonophotocatalytic processes, in order to test the efficiency of photocatalysts, while photolysis, sonolysis, and sonophotolysis tests have been done previously. The photocatalysts (TiO2-Mt) were characterized by X-ray Diffraction (XRD), X-ray Fluorescence analysis (XRF), Brunauer-Emmet-Teller (BET), Scanning Electron Microscopy (SEM) methods, thermal and thermogravimetric analysis (TG/DTA) and the zero load point (pHpzc). Aqueous solutions of dye of an initial concentration (50 mg/L), in the presence of 1 g/L of photocatalyst, were irradiated using a mercury lamp (Hg) of 40 Mw/cm2 and put in contact with an ultrasonic probe with a frequency of 20 kHz and a power of 750 W, providing the ultrasound. The results obtained indicate that a weak, good and better dye degradation rate has been observed successively by the application of the sonocatalytic, photocatalytic and sonophotocatalytic processes, where the latter has shown a synergistic effect, while the photocatalyst TiO2-Mt/MW showed significant efficiency during the degradation, due to the beneficial effect of the microwave calcination mode. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)