Synergistic Effect of Microwave Calcination and Sonophotocatalytic Activity of TiO2-Montmorillonite on The Degradation of Direct Yellow 106 and Disperse Violet 1

Issma Labib  -  Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, Algeria
*Hocine Boutoumi orcid  -  Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, Algeria
Hussein Khalaf  -  Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, Algeria
Received: 5 Jan 2020; Revised: 26 Feb 2020; Accepted: 27 Feb 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The TiO2-pillared montmorillonite nanoparticles (TiO2-Mt) were prepared by the sol-gel method, then applied for the elimination of dyes in solution: CI Direct Yellow 106 (DY106) (azo dye) and CI Disperse Violet 1 (DV1) (anthraquinone dye) by the sonocatalytic, photocatalytic and sonophotocatalytic processes, in order to test the efficiency of photocatalysts, while photolysis, sonolysis, and sonophotolysis tests have been done previously. The photocatalysts (TiO2-Mt) were characterized by X-ray Diffraction (XRD), X-ray Fluorescence analysis (XRF), Brunauer-Emmet-Teller (BET), Scanning Electron Microscopy (SEM) methods, thermal and thermogravimetric analysis (TG/DTA) and the zero load point (pHpzc). Aqueous solutions of dye of an initial concentration (50 mg/L), in the presence of 1 g/L of photocatalyst, were irradiated using a mercury lamp (Hg) of 40 Mw/cm2 and put in contact with an ultrasonic probe with a frequency of 20 kHz and a power of 750 W, providing the ultrasound. The results obtained indicate that a weak, good and better dye degradation rate has been observed successively by the application of the sonocatalytic, photocatalytic and sonophotocatalytic processes, where the latter has shown a synergistic effect, while the photocatalyst TiO2-Mt/MW showed significant efficiency during the degradation, due to the beneficial effect of the microwave calcination mode. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: TiO2-Montmorillonite; microwave calcinations; Sonophotocatalysis; Direct Yellow 106; Disperse Violet 1

Article Metrics:

  1. Markovic, D., Aponjic, Z.S., Radoicic, M., Radetic, T., Vodnik, V., Potkonjak, B., Radetic, M. (2015). Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric. Ultrasonics Sonochemistry, 24, 221−229. DOI: 10.1016/j.ultsonch.2014.11.017
  2. Gole, V.L., Gogate, P.R. (2014). Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Separation and Purification Technology, 133, 121−220. DOI: 10.1016/j.seppur.2014.07.002
  3. Khan, M.A.N., Siddique, M., Wahid, F., Khan, R. (2015) .Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrasonics Sonochemistry, 26, 370−377. DOI: 10.1016/j.ultsonch.2015.04.012
  4. Dukkanci, M., Vinatoru, M., Mason, T.J. (2014). The sonochemical decolourisation of textile azo dye Orange II: Effects of Fenton type reagents and UV light. Ultrasonics Sonochemistry, 21, 846−853. DOI: 10.1016/j.ultsonch.2013.08.020
  5. Basturk, E., Karatas, M. (2015). Decolorization of antraquinone dye Reactive Blue 181 solution by UV/ H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67−72. DOI: 10.1016/j.jphotochem.2014.11.003
  6. He, Z., Lin, L., Song, S., Xia, M., Xu, L., Ying, H., Chen, J. (2008). Mineralization of C.I. Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and Purification Technology, 62, 376−38. DOI: 10.1016/j.seppur.2008.02.005
  7. Mosleh, S., Rahimi, M.R., Ghaedi, M., Dashtian, K. (2016). Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrasonics Sonochemistry, 39, 676−68. DOI: 10.1016/j.ultsonch.2016.04.007
  8. Monteagudo, J.M., Duran, A., San Martin, I., Garcia, S. (2014). Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solution. Applied Catalysis B: Environmental, 152−153, 59−67. DOI : 10.1016/j.apcatb.2014.01.014.
  9. Sun, J.H., Sun, S.P., Sun, J.Y., Sun, R.X., Qiao, L.P., Guo, H.Q., Fan, M.H. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14, 761−766. DOI: 10.1016/j.ultsonch.2006.12.010
  10. Kumar, R., Kuma, G., Akhtar, M.S., Umar, A. (2015). Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. Journal of Alloys and Compounds, 629, 67−172. DOI: 10.1016/j.jallcom.2014.12.232
  11. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A., Khalid, N.R. (2014). Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrasonics Sonochemistry, 21, 761−773. DOI: 10.1016/j.ultsonch.2013.08.014
  12. Lops, C., Ancona, A., Cesare, K.D., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis B: Environmental, 243, 629–640. DOI: 10.1016/j.apcatb.2018.10.078
  13. Panahian, Y., Arsalani, N., Nasiri, R. (2018). Enhanced photo and sono-photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TiO2 (B)/fullerene under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 365, 45–51. DOI: 10.1016/j.jphotochem.2018.07.035
  14. Ertugay, N., Acar, F.N. (2014). The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst. Applied Surface Science, 318, 121−126. DOI : 10.1016/j.apsusc.2014.01.178.
  15. Karaca, M., Kıransan, M., Karaca, S., Khataee, A., Karimi, A. (2016). Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite. Ultrasonics Sonochemistry, 31, 250−256. DOI: 10.1016/j.ultsonch.2016.01.009
  16. Gonzalez, S., Martinez, S.S. (2008). Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonics Sonochemistry, 15, 1038−1042. DOI: 10.1016/j.ultsonch.2008.03.008
  17. Zhou, M., Yang, H., Xian, T., Li, S., Zhang, H.M., Wang, X.X. (2015). Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation. Journal of Hazardous Materials. 289, 149−157. DOI: 10.1016/j.jhazmat.2015.02.054
  18. Ghoreishian, S.M., Raju, G.S.R., Cheol, E.P., Kwak, H., Han, Y.K., Huh, Y.S. (2019). Ultrasound-assiste heterogeneous degradation of tetracycline over flowerlike rGO/CdWO4 hierarchical structures as robust solar-light-responsive photocatalysts: Optimization, kinetics, and mechanism. Applied Surface Science, 489, 110–122. DOI: 10.1016/j.apsusc.2019.05.299
  19. He, Y., Grieser, F., Ashokkumar, M. (2011). The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrasonics Sonochemistry, 18, 974−980. DOI: 10.1016/j.ultsonch.2011.03.017
  20. Bejarano-Perèz, N.J., Suarèz-Herrera, M.F. (2008). Sonochemical and sonophotocatalytic degradation of malachite green: The effect of carbon tetrachloride on reaction rates. Ultrasonics Sonochemistry, 15(4), 612−617. DOI: 10.1016/j.ultsonch.2007.09.009
  21. Madhavan, J., Kumar, P.S.S., Anandan, S., Grieser, F., Ashokkumar, M. (2010). Degradation of acid red 88 by the combination of sonolysis and photocatalysis. Separation and Purification Technology, 74, 336−341. DOI: 10.1016/j.seppur.2010.07.001
  22. Kritikos, D.E., Xekoukoulotakis, N.P., Psillakis, E., Mantzavinos, D. (2007). Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Research, 41, 2236−2246. DOI: 10.1016/j.watres.2007.01.048
  23. Mrowetz, M., Pirola, C., Selli, E. (2003). Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrasonics Sonochemistry, 10, 247–254. DOI: 10.1016/S13504177(03)00090-7
  24. Wu, C.H., Yu, C.H. (2009). Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system. Journal of Hazardous Materials, 169, 1179−1183. DOI: 10.1016/j.jhazmat.2009.04.064
  25. Cheng, Z., Quan, X., Xiong, Y., Yang, L., Huang, Y. (2012). Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor. Ultrasonics Sonochemistry, 19, 1027−1032. DOI: 10.1016/j.ultsonch.2012.02.008
  26. Wang, H., Niu, J., Long, X., He, Y. (2008). Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrasonics Sonochemistry, 15, 386−392. DOI: 10.1016/j.ultsonch.2007.09.011
  27. Talebian, N., Nilforoushan, M.R., Mogaddas, F.J. (2013). Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceramics International, 39(5), 4913−4921. DOI: 10.1016/j.ceramint.2012.11.085
  28. Hossienzadeh, K., Maleki, A., Daraei, A., Safari, M., Pawar, R., Lee, S.M. (2019). Sonocatalytic and photocatalytic efficiency of transition metal-doped ZnO nanoparticles in the removal of organic dyes from aquatic environments. Korean. J. Chem. Eng., 36(8), 1360-1370. DOI: 10.1007/s11814-019-0299-6
  29. Bokhale, N.B., Bomble, S.D., Dalbhanjan, R.R., Mahale, D.D., Hinge, S.P., Banerjee, B.S., Mohod, A.V., Gogate, P.R. (2014). Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing Wastewaters. Ultrasonics Sonochemistry, 21, 1797−1804. DOI: 10.1016/j.ultsonch.2014.03.022
  30. Kiransan, M., Khataee, A., Karaca, S., Sheydaei, M. (2015). Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 465−473. DOI: 10.1016/j.saa.2014.12.100
  31. Hassani, A., Khataee, A., Karaca, S., Karaca, C., Gholami, P. (2017). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrasonics Sonochemistry, 35(A), 251−262. DOI : 10.1016/j.ultsonch.2016.09.027.
  32. Taufik, A., Muzakkia, A., Saleh, R. (2018). Effect of nanographene platelets on adsorption and sonophotocatalytic performances of TiO2/CuO composite for removal of organic pollutants. Materials Research Bulletin, 99, 109-123. DOI: 10.1016/j.materresbull.2017.10.033
  33. Khalfaoui-Boutoumi, N., Boutoumi, H., Khalaf, H., David, B. (2013). Synthesis and characterization of TiO2 Montmorillonite / Polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G. Applied Clay Science, 80(81), 56−62. DOI: 10.1016/j.clay.2013.06.005
  34. Harrelkas, F., Paulo, A., Alves, M.M., El Khadir, L., Zahraa, O., Pons, M.N., Van der Zee, F.P. (2008). Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes. Chemosphere, 72, 1816−1822. DOI: 10.1016/j.chemosphere.2008.05.026
  35. Damardji, B., Khalaf, H., Duclaux, L., David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst Part II. Photocatalytic degradation of a textile azo dye. Applied Clay Science, 45, 98−104. DOI: 10.1016/j.clay.2009.04.002
  36. Xiuqin, O., Junping, M., Qimin, W., Junmei, Y. (2006). Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay. Journal of Rare Earths, 24(Spec Issue), 251−254. DOI: 10.1016/S1002-0721(07)60373-1
  37. Bouchenafa-Saïb, N., Khouli, K., Mohammedi, M. (2007). Preparation and characterization of pillared montmorillonite: Application in adsorption of cadmium. Desalination, 217, 282−290. DOI: 10.1016/j.desal.2007.03.007
  38. Yingguang, L., Pihui, P., Dafeng, Z., Zhuoru, Y., Lianshi, W. (2010). Preparation and photocatalytic activity of laponite pillared by CeO2 modified TiO2. Journal of Rare Earths, 28(5), 32−36. DOI: 10.1016/S1002-0721(09)60190-3
  39. Khalaf, H., Bouras, O., Perrichon, V. (1997). Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite. Microporous Materials, 8, 141-150. DOI: 10.1016/S0927-6513(96)00079-X
  40. Damardji, B., Khalaf, H., Duclaux, L., David, B, (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Applied Clay Science, 44, 201-205. DOI: 10.1016/j.clay.2008.12.010
  41. Hassani, A., Khataee, A., Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. Journal of Molecular Catalysis A: Chemical, 409, 149−161. DOI: 10.1016/j.molcata.2015.08.020
  42. Miao, S., Liu, Z., Han, B., Zhang, J., Yu, X., Du, J., Sun, Z. (2006). Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue. Journal of Materials Chemistry, 16, 579−584. DOI: 10.1039/b511426h
  43. Chen, D., Zhu, Q., Zhou, F., Deng, X., Li, F. (2012). Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. Journal of Hazardous Materials, 235−236, 186−193. DOI: 10.1016/j.jhazmat.2012.07.038
  44. Liu, J., Dong, M., Zuo, S., Yu, Y. (2009). Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Applied Clay Science, 43, 156–159. DOI: 10.1016/j.clay.2008.07.016
  45. Belessi, V., Lambropoulou, D., Konstantinou, I., Katsoulidis, A., Pomonis, P., Petridis, D., Albanis, T. (2007). Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor. Applied Catalysis B: Environmental, 73, 292–299. DOI: 10.1016/j.apcatb.2006.12.011
  46. Xu, Z., Xie, Q., Shuo, C., Hui-min, Z., Yu, L. (2007). Photocatalytic remediation of γ-hexachlorocyclohexane contaminated soils using TiO2 and montmorillonite composite photocatalyst. Journal of Environmental Sciences, 19, 358–361. DOI: 10.1016/S1001-0742(07)60059-X
  47. Liu, J., Li, X., Zuo, S., Yu, Y. (2007). Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Applied Clay Science, 37, 275−280. DOI: 10.1016/j.clay.2007.01.008
  48. Dong, F., Zhao, W., Wu, Z., Guo, S. (2009). Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. Journal of Hazardous Materials, 162, 763–770. DOI: 10.1016/j.jhazmat.2008.05.099
  49. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., Bollinger, J.C. (2002). Arsenic Adsorption onto Pillared Clays and Iron Oxides. Journal of Colloid and Interface Science, 255, 52−58. DOI: https://doi.org/10.1006/jcis.2002.8646
  50. Mogyorosi, K., Dekany, I., Fendler, .H. (2003). Preparation and Characterization of Clay Mineral Intercalated Titanium Dioxide Nanoparticles. Langmuir, 19, 2938−2946. DOI: 10.1021/la025969a
  51. Valverde, J.L., De Lucas, A., Dorado, F., Sun-Kou, R., Sanchez, P., Asencio, I., Garrido, A., Romero, A. (2003). Characterization and Catalytic Properties of Titanium-Pillared Clays Prepared by Laboratory and Pilot Scales: A Comparative Study. Ind. Eng. Chem. Res., 42, 2783−2790. DOI: 10.1021/ie0208772
  52. Belmeskine, H., Kaemarerer, M., Andhuy, M., Khalaf, H. (2005). Cadmium removal from phosphate of Djebel Onk by thermal treatment. Asian. J. Chem., 17(4), 2105−2116.
  53. Joseph, C.G., Puma, G.L., Bono, A., Krishnaiah, D., (2009). Sonophotocatalysis in advanced oxidation process: A short review. Ultrasonics Sonochemistry, 16, 583−589. DOI: 10.1016/j.ultsonch.2009.02.002
  54. Kaur, S., Singh, V. (2007). Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrasonics Sonochemistry,14, 531–537. DOI: 10.1016/j.ultsonch.2006.09.015
  55. Mahmoodi, N.M., Arami, M. (2009). Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology B: Biology. 94, 20–24. DOI: 10.1016/j.jphotobiol.2008.09.004

No citation recorded.