skip to main content

Effective TiO2-Sulfonated Carbon-derived from Eichhornia crassipes in The Removal of Methylene Blue and Congo Red Dyes from Aqueous Solution

1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 , Malaysia

3College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received: 4 Jan 2020; Revised: 26 May 2020; Accepted: 27 May 2020; Available online: 30 Jul 2020; Published: 1 Aug 2020.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The study of TiO2-sulfonated carbon-derived from Eichhornia crassipes (TiO2/SCEC), as an effective adsorbent to remove Methylene blue (MB) and Congo red (CR) dyes from aqueous solution, has been conducted. The preparation steps of TiO2/SCEC adsorbent involved the carbonisation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation of carbon for 3 h and impregnation through titanium(IV) isopropoxide (500 µmol). The physical properties of the adsorbents were characterized by using X-ray fluorescence (XRF), Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with Energy dispersive X-ray (SEM-EDX), Thermogravimetric analysis (TGA) and nitrogen adsorption-desorption studies. The dye removal study using TiO2/SCEC adsorbent was carried out by varying of contact time, adsorbent dosage, initial dye concentration, pH, particles size of adsorbent and temperature. The kinetics models were determined by the effects of contact time and the thermodynamic parameters (ΔH, ΔS, and ΔG), which were calculated by the effects of temperature. The results showed that the maximum dye removal capacity of TiO2/SCEC were 18.8 mg.g-1 for MB and 36.5 mg.g-1 for CR. The removal of MB and CR dyes using TiO2/SCEC adsorbent performed a pseudo-second order kinetic models with spontaneity. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Eichhornia crassipes; TiO2; methylene blue; congo red; adsorption; carbon
Funding: IsDB year 2019 (No: 137/UN17.11/PL/2019)

Article Metrics:

  1. Mahmoodi, N.M., Salehi, R., Arami, M. (2011). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272, 187-195. DOI: 10.1016/j.desal.2011.01.023
  2. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2013). Adsorption of Methylene Blue Dye from Aqueous Solution Using Eichhornia crassipes. Bull. Environ. Contam. Toxicol., 91(3), 362-366. DOI: 10.1007/s00128-013-1053-0
  3. Kumar, P.S., Ramalingam, S., Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean J. Chem. Eng., 28(1), 149-155. DOI: 10.1007/s11814-010-0342-0
  4. Nigam, P., Armour, G., Banat, I.M., Singh, D., Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-sate fermentation of dye-adsorbed agricultural residues. Bioresour. Technol., 72, 219-226. DOI: 10.1016/S0960-8524(99)00123-6
  5. Wawrzkiewicz, M., Polska‑Adach, E., Hubicki, Z. (2019). Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption, 25, 621–630. DOI: 10.1007/s10450-019-00062-0
  6. Hachem, C., Bocquillon, F., Zahraa, O., Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments, 49, 117-125. DOI: 10.1016/S0143-7208(01)00014-6
  7. Park, C., Lee, M., Lee, B., Kim, S.-W., Chase, H.A., Lee, J., Kim, S. (2007). Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J., 36, 59-65. DOI: 10.1016/j.bej.2006.06.007
  8. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061-1085. DOI: 10.1016/j.biortech.2005.05.001
  9. Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chem. Eng. Process., 44, 461-470. DOI: 10.1016/j.cep.2004.06.010
  10. Karaoglu, M.H., Dogan, M., Alkan, M. (2010). Removal of Reactive Blue 221 by Kaolinite from Aqueous Solution. Ind. Eng. Chem. Res., 49, 1534-1540. DOI: 10.1021/ie9017258
  11. Peng, Q., Yu, F., Huang, B., Huang, Y. (2017). Carbon-containing bone hydroxyapatite obtained from tuna fish bone with high adsorption performance for Congo red. The Royal Soc. Chem., 17, 26968. DOI: 10.1039/C6RA27055G
  12. Wang, L. (2012). Application of activated carbon derived from waste bamboo culm for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies. J. Environ. Manag., 102, 79-87. DOI: 10.1016/j.jenvman.2012.02.019
  13. Kusumawardani, R., Nurhadi, M., Wirhanuddin, Gunawan, R., Nur, H. (2019). Carbon-containing Hydroxyapatite Obtained from Fish Bone as Low-cost Mesoporous Material for Methylene Blue Adsorption. Bull. Chem. Reac. Eng. Catal., 14(3), 660-671. DOI: 10.9767/bcrec.14.3.5365.660-671
  14. Muthukumar, M., Sevakumar, N. (2004). Studies on the effect of inorganic salts on decolouration of acid dye effluent by ozonation. Dyes and Pigments, 62, 221-228. DOI: 10.1016/j.dyepig.2003.11.002
  15. Sikaily, A.E., Khaled, A., Nemr, A.E., Abdelwahab, O. (2006). Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem. Ecol., 22, 149-157. DOI: 10.1080/02757540600579607
  16. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2014). Adsorption of Congo Red Dye from Aqueous Solution Using Roots of Eichhornia Crassipes: Kinetic and Equilibrium Studies Energy Procedia, 50, 862-869. DOI: 10.1016/j.egypro.2014.06.105
  17. Zawahry, M.M.E., Kamel, M.M. (2004). Removal of azo and anthraquinone dyes from aqueous solutions by Eichhornia Crassipes. Water Research, 38, 2967-2972. DOI: 10.1016/S0043-1354(01)00526-7
  18. Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., Trapalis, C. (2009). Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J. Hazard. Mater., 170, 836-844. DOI: 10.1016/j.jhazmat.2009.05.045
  19. Wang, R., Cai, X., Shen, F. (2014). TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal. Applied Surface Sci., 305, 352-358. DOI: 10.1016/j.apsusc.2014.03.089
  20. Sriprang, P., Wongnawa, S., Sirichote, O. (2014). Amorphous titanium dioxide as an adsorbent for dye polluted water and its recyclability. J. Sol-Gel Sci. Technol., 71, 86-95. DOI: 10.1007/s10971-014-3327-3
  21. Kamal, T., Anwar, Y., Khan, S. B., Chani, M. T. S., Asiri, A. M. (2016). Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydrate Polym., 148, 153-160. DOI: 10.1016/j.carbpol.2016.04.042
  22. Li, J., Feng, J., Yan, W. (2013). Synthesis of Polypyrrole-Modified TiO2 Composite Adsorbent and Its Adsorption Performance on Acid Red G. J. Appl. Polym. Sci., 128, 3231–3239. DOI: 10.1002/app.38525
  23. Nurhadi, M., Widiyowati, I. I., Wirhanuddin, Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution, Bull. Chem. Reac. Eng. Catal., 14(1), 17-27. DOI: 10.9767/bcrec.14.1.2548.17-27
  24. Ito, S., Kon, Y., Nakashima, T., Hong, D., Konno, H., Ino, D., Sato, K. (2019). Titania-Catalyzed H2O2 Thermal Oxidation of Styrenes to Aldehydes. Molecules, 24, 1-9. DOI: 10.3390/molecules24142520
  25. Pathania, D., Arush, S., Siddiqi, Z.M., (2016). Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. J. Mol. Liq., 219, 359-367. DOI: 10.1016/j.molliq.2016.03.020
  26. Yahong, Z., Zhenhua, X., Ximing, W., Li, W., Aiqin, W. (2012). Adsorption of Congo Red onto Lognocellulose/Montmorillonite Nanocomposite. J. Wuhan University Technol. Mater., 27(5), 931-938. DOI: 10.1007/s11595-012-0576-2
  27. Aksu, Z., (2005). Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008
  28. Lima, H.K., Tenga, T.T., Ibrahima, M.H., Ahmad, A., Chee, H.T. ( 2012). Adsorption and Removal of Zinc(II) from Aqueous Solution Using Powdered Fish Bones. APCBEE Procedia, 1, 96 – 102. DOI: 10.1016/j.apcbee.2012.03.017
  29. Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N. (2006). Biosorption of Cr(IV)from aqueous solutions by Eichhornia crassipes. Chem. Eng. J., 117, 71-77. DOI: 10.1016/j.cej.2005.11.018
  30. Mahmoodi, N.M., Kharramfar, S., Najafi, N. (2011). Amine-functionalized silica nanoparticle:Preparation, characterization and anionic dye removal ability. Desalination, 279, 61-68. DOI: 10.1016/j.desal.2011.05.059
  31. Ho, Y.S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem., 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5
  32. Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., Zhang, L. (2014). The Investigation of Synergistic and competitive interaction between dye Congo red and Methyl blue on magnetic MnFe2O4. Chem. Eng. J., 246, 88-96. DOI: 10.1016/j.cej.2014.02.044
  33. Khaniabadi, Y.O., Basiri, H., Nourmoradi, H., Mohammadi, M.J., Yari, A.R., Sadeghi, S., Amrane, A. (2017). Adsorption of Congo Red Dye From Aqueous Solutions by Montmorillonite as a Low-cost Adsorbent. Inter. J. Chem. React. Eng., 16(1), 1-11. DOI: 10.15171/EHEM.2017.05
  34. Sharma, P.K., Ayub, S., Tripathi, C.N. (2016). Isotherm describing physical adsorption of Cr(VI) from aqueous solution using various agricultural wastes as adsorbent. Cogent. Eng., 3, 1-20. DOI: 10.1080/23311916.2016.1186857
  35. Baccar, R., Blangquez, P., Bouzid, J., Feki, M., Sarra, M. (2010). Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J., 165(2), 457-464. DOI: 10.1016/j.cej.2010.09.033
  36. Gao, J.-J., Qin, Y.-B., Zhou, T., Cao, D.-D., Xu, P., Hochstetter, D., Wang, Y.-F. (2013). Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. J.f Zhejiang University: Science B (Biomedicine & Biotechnol.), 14(7), 650-658. DOI: 10.1631/jzus.B12a0225
  37. Nurhadi, M., Chandren, S., Yuan, L. S., Ho, C. S., Mahlia, T. M. I., Nur, H. (2017). Titania-Loaded Coal Char as Catalyst in Oxidation of Styrene with Aqueous Hydrogen Peroxide. Int. J. Chem. Reactor Eng., 15(1), 1-11. doi: 10.1515/ijcre-2016-0088
  38. Geng, L., Wang, Y., Yu, G., Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catal. Commun., 13(1), 26-30. DOI: 10.1016/j.catcom.2011.06.014
  39. Nurhadi, M., Kusumawardani, R., Nur, H. (2018). Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bull. Chem. Reac. Eng. Catal., 13(1), 113-118. DOI: 10.9767/bcrec.13.1.1171.113-118
  40. Nurhadi, M. (2017). Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bull. Chem. Reac. Eng. Catal., 12(1), 55-61. DOI: 10.9767/bcrec.12.1.501.55-61
  41. Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Sels, B.F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catal. Today, 150(1–2), 140-146. DOI: 10.1016/j.cattod.2009.07.066
  42. Qi, Z., Wenqi, G., Chuanxin, X., Dongjiang, Y., Xiaoqing, L., Xiao, Y. Xiaofang, L. (2011). Removal of Neutral Red from aqueous solution by adsorption on spent cottonseed hull substrate. J. Hazard. Mater., 185, 502-506. DOI: 10.1016/j.jhazmat.2010.09.029

Last update:

No citation recorded.

Last update:

No citation recorded.