Dynamic Model-Free and Model-Fitting Kinetic Analysis during Torrefaction of Oil Palm Frond Pellets

*Sharmeela Matali orcid scopus  -  Faculty of Chemical Engineering, Universiti Teknologi MARA, Malaysia
Norazah Abd Rahman  -  Faculty of Chemical Engineering, Universiti Teknologi MARA, Malaysia
Siti Shawalliah Idris  -  Faculty of Chemical Engineering, Universiti Teknologi MARA, Malaysia
Nurhafizah Yaacob  -  Faculty of Chemical Engineering, Universiti Teknologi MARA, Malaysia
Received: 2 Jan 2020; Revised: 29 Jan 2020; Accepted: 29 Jan 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: International Symposium of Green Engineering and Technology 2019 (ISGET 2019)
Language: EN
Full Text:
Statistics: 150 92

Abstract

Torrefaction is a thermal conversion method extensively used for improving the properties of biomass. Usually this process is conducted within a temperature range of 200-300 °C under an inert atmosphere with residence time up to 60 minutes. This work aimed to study the kinetic of thermal degradation of oil palm frond pellet (OPFP) as solid biofuel for bioenergy production. The kinetics of OPFP during torrefaction was studied using frequently used iso-conversional model fitting (Coats-Redfern (CR)) and integral model-free (Kissinger-Akahira-Sunose (KAS)) methods in order to provide effective apparent activation energy as a function of conversion. The thermal degradation experiments were conducted at four heating rates of 5, 10, 15, and 20 °C/min in a thermogravimetric analyzer (TGA) under non-oxidative atmosphere. The results revealed that thermal decomposition kinetics of OPFP during torrefaction is significantly influenced by the severity of torrefaction temperature. Via Coats-Redfern method, torrefaction degradation reaction mechanism follows that of reaction order with n = 1. The activation energy values were 239.03 kJ/mol and 109.28 kJ/mol based on KAS and CR models, respectively. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords
Torrefaction; Oil palm frond; Kinetic parameters; Biomass; Bioenergy

Article Metrics:

  1. Energy Commission (Malaysia), Energy in Malaysia: 2017, Energy Commission, vol. 12, Putrajaya.
  2. Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K.R., Ibrahim, F.H. (2017). Biomass and bioenergy : An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev., 79, 1285–1302. DOI: 10.1016/j.rser.2017.05.111.
  3. Energy Commission (Malaysia), (2017). Peninsular Malaysia Electricity Supply Outlook 2017. Putrajaya, Malaysia.
  4. Nhuchhen, D., Basu, P., Acharya, B. (2014). A Comprehensive Review on Biomass Torrefaction. Int. J. Renew. Energy Biofuels, 2014, 1–56. DOI: 10.5171/2014.506376.
  5. Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J. (2012). Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel, 91(1), 147–154. DOI: 10.1016/j.fuel.2011.07.019.
  6. Zannikos, F., Kalligeros, S., Anastopoulos, G., Lois, E. (2013). Converting biomass and waste plastic to solid fuel rriquettes. J. Renew. Energy, 2013, 1–9. DOI: 10.1155/2013/360368.
  7. Loh, S.K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag., 141, 285–298. DOI: 10.1016/j.enconman.2016.08.081.
  8. Brachi, P., Miccio, F., Ruoppolo, G. (2015). Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process. Technol., 130, 147–154. DOI: 10.1016/j.fuproc.2014.09.043.
  9. Chen, W.-H., Wu, Z.-Y., Chang, J.-S. (2014). Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour. Technol., 155, 245–251. DOI: 10.1016/j.biortech.2013.12.116.
  10. Doddapaneni, T.R.K.C., Konttinen, J., Hukka, T.I., Moilanen, A. (2016). Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: A study on kinetics, reaction mechanism and heat flow. Ind. Crops Prod., 92, 244–254. DOI: 10.1016/j.indcrop.2016.08.013.
  11. Doyle, C.D. (1965). Series Approximations to the Equation of Thermogravimetric Data. Nature, 207, 290–291. DOI: 10.1038/207290a0
  12. Akahira, T., Sunose, T. (1971). Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.), 16, 22–31.
  13. Kissinger, H.E. (1957). Reaction Kinetics in Differential Themal Analysis. Anal. Chem., 29(11), 1702–1706. DOI: 10.1021/ac60131a045.
  14. Coats, A.W., Redfern, J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68–69. DOI: 10.1038/201068a0.
  15. White, J.E., Catallo, W.J., Legendre, B.L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis, 91(1), 1–33, DOI: 10.1016/j.jaap.2011.01.004.
  16. Medic, D. (2012). Investigation of torrefaction process parameters and characterization of torrefied biomass. PhD Dissertation, Iowa State University.
  17. Chang, S., Zhao, Z., Zheng, A., He, F., Huang, Z., Li, H. (2012). Characterization of products from torrefaction of sprucewood and bagasse in an auger reactor. Energy & Fuels, 26(11), 7009–7017, DOI: 10.1021/ef301048a.
  18. Haykiri-Acma, H., Yaman, S, Kucukbayrak, S. (2017). Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. J. Renew. Sustain. Energy, 9(063102), 1–10, DOI: 10.1063/1.4997824.
  19. Halpern, Y., Patai, S. (1969). Pyrolytic Reactions of Carbohydrates. Part VII. Simultaneous DTA-TGA Study of the Thermal Decomposition of Cellulose In Vacuo. Isr. J. Chem., 7(5), 691–696. DOI: 10.1002/ijch.196900090.
  20. Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  21. Kim, Y.-H., Lee, S.-M., Lee, H.-W., Lee, J.-W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresour. Technol., 116, 120–125. DOI: 10.1016/j.biortech.2012.04.033.
  22. Tran, K.-Q., Luo, X., Seisenbaeva, G., Jirjis, R. (2013). Stump torrefaction for bioenergy application. Appl. Energy, 112, 539–546, DOI: 10.1016/j.apenergy.2012.12.053.
  23. Wannapeera, J., Fungtammasan, B., Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrolysis, 92(1), 99–105. DOI: 10.1016/j.jaap.2011.04.010.
  24. Chen, W.-H., Kuo, P.-C. (2011). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803–811. DOI:  10.1016/j.energy.2010.12.036.
  25. Dhyani, V., Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy, 129, 695–716. DOI: 10.1016/j.renene.2017.04.035.
  26. Mishra, G., Bhaskar, T. (2014). Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour. Technol., 169, 614–621. DOI: 10.1016/j.biortech.2014.07.045.
  27. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  28. Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab., 93(1), 90–98. DOI: 10.1016/j.polymdegradstab.2007.10.012.
  29. Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G. (2015). Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process. Technol., 130(C), 147–154. DOI: 10.1016/j.fuproc.2014.09.043.
  30. Martín-Lara, M.A., Blázquez, G., Zamora, M.C., Calero, M. (2017). Kinetic modelling of torrefaction of olive tree pruning. Appl. Therm. Eng., 113, 1410–1418. DOI: 10.1016/j.applthermaleng.2016.11.147.
  31. Grigiante, M., Brighenti, M., Antolini, D. (2016). A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods. Renew. Energy, 99, 1318–1326. DOI: 10.1016/j.renene.2016.07.054.
  32. Slopiecka, K., Bartocci, P., Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy, 97, 491–497. DOI: 10.1016/j.apenergy.2011.12.056.
  33. Oluoti, K., Doddapaneni, T.R.K.C., Richards, T. (2018). Investigating the kinetics and biofuel properties of Alstonia congensis and Ceiba pentandra via torrefaction. Energy, 150, 134–141. DOI: 10.1016/j.energy.2018.02.086.
  34. Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., Ma, Z. (2018). Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag., 169, 228–237. DOI: 10.1016/j.enconman.2018.05.063.
  35. Burnham, A.K., Dinh, L.N. (2007). A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J. Therm. Anal. Calorim., 89(2), 479–490. DOI: 10.1007/s10973-006-8486-1.
  36. Martí-Rosselló, T., Li, J., Leo, L. (2016). Kinetic models for biomass pyrolysis. Arch Ind Biotechnol, 1(1), 4–7.
  37. Vyazovkin, S. (2015). Some Basics En Route to Isoconversional Methodology in Isoconversional Kinetics of Thermally Stimulated Processes, Springer International Publishing Switzerland, 1–25.
  38. Šimon, P. (2004). Isoconversional methods: Fundamentals, meaning and application. J. Therm. Anal. Calorim., 76(1), 123–132. DOI: 10.1023/B:JTAN.0000027811.80036.6c.