Enhanced Long-term Stability and Carbon Resistance of Ni/MnxOy-Al2O3 Catalyst in Near-equilibrium CO2 Reforming of Methane for Syngas Production

Baya Djebarri  -  Department of Chemistry, Faculty of Sciences, University of M’hamed Bougara, Algeria
*Fouzia Touahra  -  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Nadia Aider  -  Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri de Tizi Ouzou, Algeria
Ferroudja Bali  -  Laboratory of Natural Gas Chemistry, Faculty of Chemistry, Université des sciences et de la Technologie Houari-Boumediene, Algeria
Moussa Sehailia  -  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Redouane Chebout  -  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Khaldoun Bachari  -  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Djamila Halliche  -  Laboratory of Natural Gas Chemistry, Faculty of Chemistry, Université des sciences et de la Technologie Houari-Boumediene, Algeria
Received: 1 Jan 2020; Revised: 6 Mar 2020; Accepted: 13 Mar 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Herein we study the catalytic activity/stability of a new generation of cheap and readily available Ni and Al-based catalysts using two Mn precursors, namely Mn(NO3)2 and Mn(EDTA)2- complex in the reaction of CO2 reforming of methane. In this respect, Ni/Al2O3 and two types of Ni/MnxOy-Al2O3 catalysts were successfully synthesized and characterized using various analytical techniques: TGA, ICP, XRD, BET, FTIR, TPR-H2, SEM-EDX, TEM, XPS and TPO-O2. Utilization of Mn(EDTA)2- as synthetic precursor successfully furnished Ni/Al2O3-MnxOyY (Y = EDTA) catalyst which was more active during CO2 reforming of methane when compared to Ni/MnxOy-Al2O3 catalyst, synthesized using Mn(NO3)2 precursor. Compared to Ni/MnxOy-Al2O3, Ni/Al2O3-MnxOyY catalyst afforded near-equilibrium conversion values at 700 °C (ca. 95% conversion for CH4 and CO2, and H2/CO = 0.99 over 50 h reaction time). Also, Ni/Al2O3-MnxOyY showed more resistance to carbon formation and sintering; interestingly, after 50 h reaction time, the size of Ni0 particles in Ni/MnxOy-Al2O3 almost doubled while that of Ni/Al2O3-MnxOyY remained unchanged. The elevated conversion of CO2 and CH4 in conjunction with the observed low carbon deposition on the surface of our best catalyst (Ni/Al2O3-MnxOyY) indicated the presence of MnxOy oxide positioning mediated simultaneous in-situ carbon elimination with subsequent generation of oxygen vacant sites on the surface for more CO2 adsorption. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: MnxOy; Al2O3; CO2 reforming of methane; carbon resistance

Article Metrics:

  1. Centi, G., Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148, 191-205.
  2. Al-Fatesh, A.S., Naeem, M.A., Fakeeha, A.H., Abasaeed, A.E. (2013). CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 86, 742-748.
  3. Usman, M., Daud, W.W., Abbas, H.F. (2015). Dry reforming of methane: influence of process parameters- A review Renew. Renewable and Sustainable Energy Reviews, 45, 710-744.
  4. Kogler, M., Köck E.-M. Klötzer, B., Schachinger, T., Wallisch, W., Henn, R., Huck, C.W., Hejny, C., Penner, S. (2016). High-temperature carbon deposition on oxide surfaces by CO disproportionation. Journal of Physical Chemistry C, 120, 1795-1807.
  5. Lavoie, J.-M. (2014). Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Frontiers in chemestry, 2, 81-92.
  6. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., Ahmad, M.N. (2017). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 82, 2570-2585.
  7. Nezam, I., Peereboom, L., Miller, D.J. (2017). Enhanced Acrylate Production from 2-Acetoxypropanoic Acid Esters. Organic Process Research & Development, 21(5), 715-719.
  8. Lødeng, R., Lunder, O., Lein, J.E., Dahl, P.I., Svenum, I.H. (2018). Synthesis of light olefins and alkanes on supported iron oxide catalysts. Catalysis Today, 299, 47-59.
  9. Isobe, J., Lo, C., Childers, A., Yates, S., Winton, D. (2019). U.S. Patent No. 10,486,967. Washington, DC: U.S. Patent and Trademark Office.
  10. Touahra, F., Sehailia, M., Halliche, D., Bachari, K., Saadi, A., Cherifi, O. (2016). (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: Advocating the role of concurrent carbothermic redox looping in the elimination of coke. International Journal of Hydrogen Energy, 41, 21140-21156.
  11. Kaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18, 293-301.
  12. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T., DaCosta, P. (2016). Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni-Mg-Al hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 41, 11616-11623.
  13. Aider, N., Touahra, F., Bali, F., Djebarri, B., Lerari, D., Bachari, K., Halliche, D. (2018) Improvement of catalytic stability and carbon resistance in the process of CO2 reforming of methane by CoAl and CoFe hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 43, 8256-8266.
  14. Touahra, F., Chebout, R., Lerari, D., Halliche, D., Bachari, K. (2019) Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of mthane. Energy, 171, 465-474.
  15. Barroso-Quiroga, M.M., Castro-Luna, A.E. (2010). Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. International Journal of Hydrogen Energy, 35, 6052-6056.
  16. Wang, N., Chu, W., Zhang, T., Zhao, X. (2012). Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. International Journal of Hydrogen Energy, 37, 19-30.
  17. Naeem, M.A., Al-Fatesh, A.S., Khan, W.U., Abasaeed, A.E., Fakeeha, A.H. (2013) Syngas production from dry reforming of methane over nano Ni polyol catalysts. International Journal of Chemical Engineering and Application, 4, 315-320.
  18. Bhavani, A.G., Kim, W.Y., Lee, J.S. (2013). Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 3, 1537-1544.
  19. Abdullah, B., Abd Ghani, N.A., Vo, D.-V.N. (2017). Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production, 162, 170-185.
  20. Liu, H., Hadjltaief, H.B., Benzina, M., Gálvez, M.E., Da Costa, P. (2019 ). Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn). International Journal of Hydrogen Energy, 44, 246-255.
  21. Littlewood, P., Xie, X., Bernicke, M., Thomas, A., Schomäcker, R. (2015). Ni0.05Mn0.95O catalysts for the dry reforming of methane. Catalysis Today, 242, 111-118.
  22. Mousavi, S.M., Meshkani, F., Rezaei, M. (2017). Preparation of mesoporous nanocrystalline 10% Ni/Ce1− xMnxO2 catalysts for dry reforming reaction. International Journal of Hydrogen Energy, 42, 24776-24784.
  23. Rouibah, K., Barama, A., Benrabaa, R., Guerro-caballero, J., Tanusheree, K., Vannier, R-N., Rubbens, A., Loberg, A. (2018). Dry reforming of methane on nickel-chrome, nickel-cobalt and nickel-manganese catalysts. International Journal of Hydrogen Energy, 42, 29725-29734.
  24. Yao, L., Zhu, J., Peng, X., Tong, D., Hu, C. (2013). Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 38, 7268-7279.
  25. Melo, F., Morlanés, N. (2008). Study of the composition of ternary mixed oxides: Use of these materials on a hydrogen production process. Catalysis Today, 133-135, 374-382.
  26. Holgado, M.J., Rives, V., San Román, M.S. (2001). Characterization of Ni-Mg-Al mixed oxides and their catalytic activity in oxidative dehydrogenation of n-butane and propene. Applied Catalysis A, 214, 219-228.
  27. Tsyganok, A.I., Suzuki, K., Hamakawa, S., Takehira, K., Hayakawa, T. (2001) Mg-Al layered double hydroxide intercalated with [Ni (edta)]2− chelate as a precursor for an efficient catalyst of methane reforming with carbon dioxide. Catalysis letter, 77, 75-86.
  28. Djebarri, B., Gonzalez-Delacruz, V., Halliche, D., Bachari, K., Saadi, A., Caballero, A., Holgado, J.P., Cherifi, O. (2014). Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 111, 259-275.
  29. Jamhour, R. (2014). Intercalation and complexation of Co (II) and Ni (II) by chelating ligands incorporated in Zn-Al layered double hydroxides. Canadian Chemical Transactions, 2, 306-315.
  30. Guo, F., Xu, J.-Q., Chu, W. (2015). CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catalysis Today, 256, 124-129.
  31. Arnoldy, P., Moulijn, J.A. (1985). Temperature-programmed reduction of CoOAI2O3 catalysts. Journal of catalysis, 93, 38-54.
  32. Yao, L., Wang, Y., Shi, J., Xu, H., Shen, W., Hu, C. (2017). The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane. Catalysis Today, 281, 259-267.
  33. Grosvenor, A.P., Biesinger, M.C., Smart, R.S.C., McIntyre, N.S. (2006) New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 600, 1771-1779.
  34. Wang, Y., Deng, W., Wang, Y., Guo, L., Ishihara, T. (2018). A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides. Molecular Catalysis, 459, 61-70.
  35. He, H., Lin, X., Li, S., Wu, Z., Gao, J., Wu, J., Wen, W., Ye, D., Fu, M. (2018) The key surface species and oxygen vacancies in MnOx (0.4)-CeO2 toward repeated soot oxidation. Applied Catalysis B, 223, 134-142.
  36. Zhu, Z., Zhao, Q., Li, X., Li, H., Tade, M., Liu, S. (2013). Photocatalytic performances and activities in Ag-doped ZnAl2O4 nanorods studied by FTIR spectroscopy. Catalysis Science and Technology, 3, 788-796.
  37. Jo, S.W., Im, Y., Do, J.Y., Park, N.-K., Lee, T.J., Lee, S.T., Cha, M.S., Jeon, M.-K., Kang, M. (2017). Synergies between Ni, Co, and Mn ions in trimetallic Ni1-xCoxMnO4 catalysts for effective hydrogen production from propane steam reforming. Renewable Energy, 113, 248-256.
  38. Ray, D., Reddy, P.M.K., Subrahmanyam, C. (2018). Ni-Mn/γ-Al2O3 assisted plasma dry reforming of methane. Catalysis Today, 309, 212-218.
  39. Gan, T., Ding, G., Chen, B., Zhi, X., Li, P., Yao, X., Hou, N., Fan, L., Zhao, Y., Li, Y. (2019). Effects of manganese oxides on the activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells with methanol as the fuel. Catalysis Today, 330, 222-227.
  40. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2), 129-136
  41. Rezaei, M. (2016). Effect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane. Iranian Journal of Hydrogen & Fuel Cell, 2, 215-226.
  42. Ramezani, Y., Meshkani, F., Rezaei, M. (2018). Preparation and evaluation of mesoporous nickel and manganese bimetallic nanocatalysts in methane dry reforming process for syngas production. Journal of Chemical Sciences, 130, 11-21.

No citation recorded.