skip to main content

Enhanced Long-term Stability and Carbon Resistance of Ni/MnxOy-Al2O3 Catalyst in Near-equilibrium CO2 Reforming of Methane for Syngas Production

1Department of Chemistry, Faculty of Sciences, University of M’hamed Bougara, Independence Avenue, 35000 Boumerdes, Algeria

2Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP42004, Tipaza, Algeria

3Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri de Tizi Ouzou, Tizi-ouzou, Algeria

4 Laboratory of Natural Gas Chemistry, Faculty of Chemistry, Université des sciences et de la Technologie Houari-Boumediene, BP 32 16111 Algiers, Algeria

View all affiliations
Received: 1 Jan 2020; Revised: 6 Mar 2020; Accepted: 13 Mar 2020; Available online: 30 Jul 2020; Published: 1 Aug 2020.
Editor(s): Istadi Istadi
This article was corrected on DOI: https://doi.org/10.9767/bcrec.15.3.9855.907-907
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Herein we study the catalytic activity/stability of a new generation of cheap and readily available Ni and Al-based catalysts using two Mn precursors, namely Mn(NO3)2 and Mn(EDTA)2- complex in the reaction of CO2 reforming of methane. In this respect, Ni/Al2O3 and two types of Ni/MnxOy-Al2O3 catalysts were successfully synthesized and characterized using various analytical techniques: TGA, ICP, XRD, BET, FTIR, TPR-H2, SEM-EDX, TEM, XPS and TPO-O2. Utilization of Mn(EDTA)2- as synthetic precursor successfully furnished Ni/Al2O3-MnxOyY (Y = EDTA) catalyst which was more active during CO2 reforming of methane when compared to Ni/MnxOy-Al2O3 catalyst, synthesized using Mn(NO3)2 precursor. Compared to Ni/MnxOy-Al2O3, Ni/Al2O3-MnxOyY catalyst afforded near-equilibrium conversion values at 700 °C (ca. 95% conversion for CH4 and CO2, and H2/CO = 0.99 over 50 h reaction time). Also, Ni/Al2O3-MnxOyY showed more resistance to carbon formation and sintering; interestingly, after 50 h reaction time, the size of Ni0 particles in Ni/MnxOy-Al2O3 almost doubled while that of Ni/Al2O3-MnxOyY remained unchanged. The elevated conversion of CO2 and CH4 in conjunction with the observed low carbon deposition on the surface of our best catalyst (Ni/Al2O3-MnxOyY) indicated the presence of MnxOy oxide positioning mediated simultaneous in-situ carbon elimination with subsequent generation of oxygen vacant sites on the surface for more CO2 adsorption. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Corrigendum to this article is herehttps://doi.org/10.9767/bcrec.15.3.9855.907-907

 

Fulltext View|Download
Keywords: MnxOy; Al2O3; CO2 reforming of methane; carbon resistance
Funding: Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC)

Article Metrics:

  1. Centi, G., Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148, 191-205
  2. Al-Fatesh, A.S., Naeem, M.A., Fakeeha, A.H., Abasaeed, A.E. (2013). CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 86, 742-748
  3. Usman, M., Daud, W.W., Abbas, H.F. (2015). Dry reforming of methane: influence of process parameters- A review Renew. Renewable and Sustainable Energy Reviews, 45, 710-744
  4. Kogler, M., Köck E.-M. Klötzer, B., Schachinger, T., Wallisch, W., Henn, R., Huck, C.W., Hejny, C., Penner, S. (2016). High-temperature carbon deposition on oxide surfaces by CO disproportionation. Journal of Physical Chemistry C, 120, 1795-1807
  5. Lavoie, J.-M. (2014). Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Frontiers in chemestry, 2, 81-92
  6. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., Ahmad, M.N. (2017). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 82, 2570-2585
  7. Nezam, I., Peereboom, L., Miller, D.J. (2017). Enhanced Acrylate Production from 2-Acetoxypropanoic Acid Esters. Organic Process Research & Development, 21(5), 715-719
  8. Lødeng, R., Lunder, O., Lein, J.E., Dahl, P.I., Svenum, I.H. (2018). Synthesis of light olefins and alkanes on supported iron oxide catalysts. Catalysis Today, 299, 47-59
  9. Isobe, J., Lo, C., Childers, A., Yates, S., Winton, D. (2019). U.S. Patent No. 10,486,967. Washington, DC: U.S. Patent and Trademark Office
  10. Touahra, F., Sehailia, M., Halliche, D., Bachari, K., Saadi, A., Cherifi, O. (2016). (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: Advocating the role of concurrent carbothermic redox looping in the elimination of coke. International Journal of Hydrogen Energy, 41, 21140-21156
  11. Kaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18, 293-301
  12. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T., DaCosta, P. (2016). Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni-Mg-Al hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 41, 11616-11623
  13. Aider, N., Touahra, F., Bali, F., Djebarri, B., Lerari, D., Bachari, K., Halliche, D. (2018) Improvement of catalytic stability and carbon resistance in the process of CO2 reforming of methane by CoAl and CoFe hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 43, 8256-8266
  14. Touahra, F., Chebout, R., Lerari, D., Halliche, D., Bachari, K. (2019) Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of mthane. Energy, 171, 465-474
  15. Barroso-Quiroga, M.M., Castro-Luna, A.E. (2010). Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. International Journal of Hydrogen Energy, 35, 6052-6056
  16. Wang, N., Chu, W., Zhang, T., Zhao, X. (2012). Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. International Journal of Hydrogen Energy, 37, 19-30
  17. Naeem, M.A., Al-Fatesh, A.S., Khan, W.U., Abasaeed, A.E., Fakeeha, A.H. (2013) Syngas production from dry reforming of methane over nano Ni polyol catalysts. International Journal of Chemical Engineering and Application, 4, 315-320
  18. Bhavani, A.G., Kim, W.Y., Lee, J.S. (2013). Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 3, 1537-1544
  19. Abdullah, B., Abd Ghani, N.A., Vo, D.-V.N. (2017). Recent advances in dry reforming of methane over Ni-based catalysts. Journal of Cleaner Production, 162, 170-185
  20. Liu, H., Hadjltaief, H.B., Benzina, M., Gálvez, M.E., Da Costa, P. (2019 ). Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn). International Journal of Hydrogen Energy, 44, 246-255
  21. Littlewood, P., Xie, X., Bernicke, M., Thomas, A., Schomäcker, R. (2015). Ni0.05Mn0.95O catalysts for the dry reforming of methane. Catalysis Today, 242, 111-118
  22. Mousavi, S.M., Meshkani, F., Rezaei, M. (2017). Preparation of mesoporous nanocrystalline 10% Ni/Ce1− xMnxO2 catalysts for dry reforming reaction. International Journal of Hydrogen Energy, 42, 24776-24784
  23. Rouibah, K., Barama, A., Benrabaa, R., Guerro-caballero, J., Tanusheree, K., Vannier, R-N., Rubbens, A., Loberg, A. (2018). Dry reforming of methane on nickel-chrome, nickel-cobalt and nickel-manganese catalysts. International Journal of Hydrogen Energy, 42, 29725-29734
  24. Yao, L., Zhu, J., Peng, X., Tong, D., Hu, C. (2013). Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 38, 7268-7279
  25. Melo, F., Morlanés, N. (2008). Study of the composition of ternary mixed oxides: Use of these materials on a hydrogen production process. Catalysis Today, 133-135, 374-382
  26. Holgado, M.J., Rives, V., San Román, M.S. (2001). Characterization of Ni-Mg-Al mixed oxides and their catalytic activity in oxidative dehydrogenation of n-butane and propene. Applied Catalysis A, 214, 219-228
  27. Tsyganok, A.I., Suzuki, K., Hamakawa, S., Takehira, K., Hayakawa, T. (2001) Mg-Al layered double hydroxide intercalated with [Ni (edta)]2− chelate as a precursor for an efficient catalyst of methane reforming with carbon dioxide. Catalysis letter, 77, 75-86
  28. Djebarri, B., Gonzalez-Delacruz, V., Halliche, D., Bachari, K., Saadi, A., Caballero, A., Holgado, J.P., Cherifi, O. (2014). Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 111, 259-275
  29. Jamhour, R. (2014). Intercalation and complexation of Co (II) and Ni (II) by chelating ligands incorporated in Zn-Al layered double hydroxides. Canadian Chemical Transactions, 2, 306-315
  30. Guo, F., Xu, J.-Q., Chu, W. (2015). CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catalysis Today, 256, 124-129
  31. Arnoldy, P., Moulijn, J.A. (1985). Temperature-programmed reduction of CoOAI2O3 catalysts. Journal of catalysis, 93, 38-54
  32. Yao, L., Wang, Y., Shi, J., Xu, H., Shen, W., Hu, C. (2017). The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane. Catalysis Today, 281, 259-267
  33. Grosvenor, A.P., Biesinger, M.C., Smart, R.S.C., McIntyre, N.S. (2006) New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 600, 1771-1779
  34. Wang, Y., Deng, W., Wang, Y., Guo, L., Ishihara, T. (2018). A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides. Molecular Catalysis, 459, 61-70
  35. He, H., Lin, X., Li, S., Wu, Z., Gao, J., Wu, J., Wen, W., Ye, D., Fu, M. (2018) The key surface species and oxygen vacancies in MnOx (0.4)-CeO2 toward repeated soot oxidation. Applied Catalysis B, 223, 134-142
  36. Zhu, Z., Zhao, Q., Li, X., Li, H., Tade, M., Liu, S. (2013). Photocatalytic performances and activities in Ag-doped ZnAl2O4 nanorods studied by FTIR spectroscopy. Catalysis Science and Technology, 3, 788-796
  37. Jo, S.W., Im, Y., Do, J.Y., Park, N.-K., Lee, T.J., Lee, S.T., Cha, M.S., Jeon, M.-K., Kang, M. (2017). Synergies between Ni, Co, and Mn ions in trimetallic Ni1-xCoxMnO4 catalysts for effective hydrogen production from propane steam reforming. Renewable Energy, 113, 248-256
  38. Ray, D., Reddy, P.M.K., Subrahmanyam, C. (2018). Ni-Mn/γ-Al2O3 assisted plasma dry reforming of methane. Catalysis Today, 309, 212-218
  39. Gan, T., Ding, G., Chen, B., Zhi, X., Li, P., Yao, X., Hou, N., Fan, L., Zhao, Y., Li, Y. (2019). Effects of manganese oxides on the activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells with methanol as the fuel. Catalysis Today, 330, 222-227
  40. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2), 129-136
  41. Rezaei, M. (2016). Effect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane. Iranian Journal of Hydrogen & Fuel Cell, 2, 215-226
  42. Ramezani, Y., Meshkani, F., Rezaei, M. (2018). Preparation and evaluation of mesoporous nickel and manganese bimetallic nanocatalysts in methane dry reforming process for syngas production. Journal of Chemical Sciences, 130, 11-21

Last update:

No citation recorded.

Last update:

No citation recorded.