Kinetics and Thermodynamics Study of Ultrasound-Assisted Depolymerization of k-Carrageenan in Acidic Solution

*Ratnawati Ratnawati orcid scopus  -  Department of Chemical Engineering, Diponegoro University, Indonesia
Nita Indriyani  -  Department of Chemical Engineering, Faculty of Science and Technology, Universitas Pendidikan Muhammadiyah, Indonesia
Received: 14 Dec 2019; Revised: 9 Feb 2020; Accepted: 11 Feb 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Abstract

K-carrageenan is a natural polymer with high molecular weight ranging from 100 to 1000 kDa. The oligocarrageenan with low molecular weight is widely used in biomedical application. The aim of this work was to depolymerize k-carrageenan in an acidic solution with the assistance of ultrasound irradiation. The ultrasonication was conducted at various pH (3 and 6), temperatures (30-60 °C), and depolymerization time (0-24 minutes). The results show that the depolymerization reaction follows pseudo-first-order kinetic model with reaction rate constant of 1.856×10-7 to 2.138×10-6 s-1. The reaction rate constant increases at higher temperature and lower pH. The Q10-temperature coefficients of the depolymerization are 1.25 and 1.51 for pH 6 and 3, respectively. The enthalpy of activation (ΔH) and the Gibbs energy of activation (ΔG) are positive, while the entropy of activation (ΔS) is negative, indicating that the activation step of the ultrasound-assisted depolymerization of k-carrageenan is endothermic, non-spontaneous, and the molecules at the transition state is more ordered than at the ground state. The ΔH and the ΔS are not affected by temperature, while the ΔG is a weak function of temperature. The ΔH and ΔS become smaller at higher pH, while the ΔG increases with the increase of pH. The kinetics and thermodynamics analysis show that the ultrasound-assisted depolymerization of k-carrageenan in acidic solution is possibly through three mechanisms, i.e. bond cleavage due to cavitational effect of microbubbles, hydroxyl radical and hydrogen peroxide, as well as proton. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Hydrolysis; Q10-temperature coefficient; Ultrasonication; K-carrageenan; Depolymerization

Article Metrics:

  1. Wijesekara, I., Pangestuti, R., Kim, S.K. (2011). Biological Activities and Potential Health Benefits of Fucoxanthin Derived from Marine Brown Algae. Carbohydrate Polymers, 84, 14-21. DOI: 10.1016/j.carbpol.2010.10.062
  2. Haijin, M., Xiaolu, J., Huashi, G. (2003). A k-carrageenan Derived Oligosaccharide Prepared by Enzymatic Degradation Containing Anti-tumor Activity. Journal of Applied Phycology, 15, 297-303. DOI: 10.1023/A:1025103530534
  3. Harden, E.A., Falshaw, R., Carnachan, S.M., Kern, E.R., Prichard, M.N. (2009). Virucidal Activity of Polysaccharide Extracts from Four Algal Species Against Herpes Simplex Virus. Antiviral Research, 83(3), 282-289. DOI: 10.1016/j.antiviral.2009.06.007
  4. Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P. (2014). Bioactivity of Sulfated Polysaccharides from the Edible Red Seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 3(1). 29-40. DOI: 10.1016/j.bcdf.2014.01.002
  5. Suganya, A.M., Sanjivkumar, M., Chandran, M.N., Palavesam, A., Immanuel, G. (2016). Pharmacological Importance of Sulphated Polysaccharide Carrageenan from Red Seaweed Kappaphycus alvarezii in Comparison with Commercial Carrageenan. Biomedicine & Pharmacotherapy, 84, 1300-1312. DOI: 10.1016/j.biopha.2016.10.067
  6. Lai, V.M.F., Lii, C.Y., Hung, W.L., Lu, T.J. (2000). Kinetic Compensation Effect in Depolymerisation of Food Polysaccharides. Food Chemistry, 68(3), 319-325. DOI: 10.1016/S0308-8146(99)00198-3
  7. Singh, S.K., Jacobsson, S.P. (1994). Kinetics of Acid Hydrolysis of k-carrageenan as Determined by Molecular Weight (SEC-MALLS- RI), Gel Breaking Strength, and Viscosity Measurements. Carbohydrate Polymers, 23, 89-103.
  8. Hjerde, T., Smidsrød, O., Christensen, B.E. (1996). The Influence of the Conformational State of κ- and ι-Carrageenan on the Rate of Acid Hydrolysis. Carbohydrate Research, 288, 175-187. DOI: 10.1016/0008-6215(96)00102-4
  9. Myslabodski, D.E., Stancioff, D., Heckert, R.A. (1996). Effect of Acid Hydrolysis on the Molecular Weight of Kappa Carrageenan by GPC-LS. Carbohydrate Polymers, 31(1-2), 83-92. DOI: 10.1016/S0144-8617(96)00054-9
  10. Karlsson, A., Singh, S.K. (1999). Acid Hydrolysis of Sulphated Polysaccharides. Desulphation and the Effect on Molecular Mass. Carbohydrate Polymers. 38(1), 7-15. DOI: 10.1016/S0144-8617(98)00085-X
  11. Leiter, A., Mailänder, J., Wefers, D., Bunzel, M., Gaukel, V. (2017). Influence of Acid Hydrolysis and Dialysis of k-Carrageenan on Its Ice Recrystallization Inhibition Activity. Journal of Food Engineering, 209, 26-35. DOI: 10.1016/j.jfoodeng.2017.04.013
  12. Prasetyaningrum, A., Ratnawati, R., Jos, B. (2017). Kinetics of Oxidative Depolymerization of K-Carrageenan by Ozone. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 235-242. DOI: 10.9767/bcrec.12.2.805.235-242
  13. Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 48-58. DOI: 10.9767/bcrec.11.1.415.48-58
  14. Jin, J., Ma, H., Qu, W., Wang, K., Zhou, C., He, R., Lou, L., Owusu, J. (2015). Effects of Multi-Frequency Power Ultrasound on the Enzymolysis of Corn Gluten Meal: Kinetics and Thermodynamics Study. Ultrasonics Sonochemistry, 27, 46-53. DOI: 10.1016/j.ultsonch.2015.04.031
  15. Suslick, K.S., Flannigan, D.J. (2008). Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation. Annual Review of Physical Chemistry, 59(1), 659-683. DOI: 10.1146/annurev.physchem.59.032607.09373
  16. Vreeman, H.J., Snoeren, T.H.M., Payens, T.A.J. (1980). Physicochemical Investigation of k-Carrageenan in the Random State. Biopolymers, 19(7), 1357-1374. DOI: 10.1002/bip.1980.360190711
  17. Lii, C.Y., Chen, C.H., Yeh, A.I., Lai, V.M.F. (1999). Preliminary Study on the Degradation Kinetics of Agarose and Carrageenans by Ultrasound. Food Hydrocolloids, 13(6), 477-481. DOI: 10.1016/S0268-005X(99)00031-4
  18. Wang, D., Ma, X., Yan, L., Chantapakul, T., Wang, W., Ding, T., Ye, X., Liu, D. (2017). Ultrasound Assisted Enzymatic Hydrolysis of Starch Catalyzed by Glucoamylase: Investigation on Starch Properties and Degradation Kinetics. Carbohydrate Polymers, 175, 47-54. DOI: 10.1016/j.carbpol.2017.06.093
  19. Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y. (2015). Nonlinear Temperature Sensitivity of Enzyme Kinetics Explains Canceling Effect-A Case Study on Loamy Haplic Luvisol. Frontiers in Microbiology, 6, 1-13. DOI: 10.3389/fmicb.2015.01126
  20. Waghmare, G.V., Rathod, V.K. (2016). Ultrasound Assisted Enzyme Catalyzed Hydrolysis of Waste Cooking Oil Under Solvent Free Condition. Ultrasonics Sonochemistry, 32, 60-67. DOI: 10.1016/j.ultsonch.2016.01.033
  21. Prajapat, A.L., Subhedar, P.B., Gogate, P.R. (2016). Ultrasound Assisted Enzymatic Depolymerization of Aqueous Guar Gum Solution. Ultrasonics Sonochemistry, 29, 84-92. DOI: 10.1016/j.ultsonch.2015.09.009
  22. Nie, M., Wang, Q., Qiu, G. (2008). Enhancement of Ultrasonically Initiated Emulsion Polymerization Rate Using Aliphatic Alcohols as Hydroxyl Radical Scavengers. Ultrasonics Sonochemistry, 15(3), 222-226. DOI: 10.1016/j.ultsonch.2007.03.010
  23. Gogate, P.R., Prajapat, A.L. (2015). Depolymerization using sonochemical reactors: A critical review. Ultrason Sonochem, 27, 480-494. DOI: 10.1016/j.ultsonch.2015.06.019
  24. Li, X., Xu, A., Xie, H., Yu, W., Xie, W., Ma, X. (2010). Preparation of Low Molecular Weight Alginate by Hydrogen Peroxide Depolymerization for Tissue Engineering. Carbohydrate Polymers, 79(3), 660-664. DOI: 10.1016/j.carbpol.2009.09.020
  25. Wu, M., Xu, S., Zhao, J., Kang, H., Ding, H. (2010). Preparation and Characterization of Molecular Weight Fractions of Glycosaminoglycan from Sea Cucumber Thelenata ananas Using Free Radical Depolymerization. Carbohydrate Research, 345(5), 649-655. DOI: 10.1016/j.carres.2009.11.030
  26. Mahalik, J.P., Madras, G. (2005). Effect of Alkyl Group Substituants, Temperature, and Solvents on the Ultrasonic Degradation of Poly(n-alkyl acrylates). Industrial & Engineering Chemistry Research, 44(17), 6572-6577. DOI: 10.1021/ie0504607
  27. Chakraborty, J., Sarkar, J., Kumar, R., Madras, G. (2004). Ultrasonic Degradation of Polybutadiene and Isotactic Polypropylene. Polymer Degradation and Stability, 85(1), 555-558. DOI: 10.1016/j.polymdegradstab.2003.09.021
  28. Yoo, Y.S., Goh, G.H., Song, J.H., Oh, S.H., Cho, I.H., Kang, S.Y., Park, C.H., Lee, S.H. (2010). Method for Producing Biofuels via Hydrolysis of Seaweed Extract Using Heterogeneous Catalyst. WO Application. 2010098585 A2.
  29. Xiang, Q., Lee, Y.Y., Pettersson, P.O., Torget, R.W. (2003). Heterogeneous Aspects of Acid Hydrolysis of a-Cellulose, Applied Biochemistry and Biotechnology, 705, 505-506. DOI: 10.1385/ABAB:107:1-3:505
  30. Choi, J.H., Kim, S.B. (1994). Effect of Ultrasound on Sulfuric Acid-Catalysed Hydrolysis of Starch. Korean Journal of Chemical Engineering, 11(3), 178-184. DOI: 10.1007/BF02697463
  31. Daraboina, N., Madras, G. (2009). Kinetics of the Ultrasonic Degradation of Poly (alkyl methacrylates). Ultrasonics Sonochemistry, 16(2), 273-279. DOI: 10.1016/j.ultsonch.2008.08.007
  32. L’Homme, C., Arbelot, M., Puigserver, A., Biagini, A. (2003). Kinetics of Hydrolysis of Fructooligosaccharides in Mineral-Buffered Aqueous Solutions: Influence of pH and Temperature. Journal of Agricultural and Food Chemistry, 51(1), 224-228. DOI: 10.1021/jf0204699
  33. Sarve, A.N., Varma, M.N., Sonawane, S.S. (2016). Ultrasound Assisted Two-Stage Biodiesel Synthesis from Non-Edible Schleichera triguga Oil Using Heterogeneous Catalyst: Kinetics and Thermodynamic Analysis. Ultrasonics Sonochemistry, 29, 288-298. DOI: 10.1016/j.ultsonch.2015.09.016

No citation recorded.