One-Pot Access to Diverse Functionalized Pyran Annulated Heterocyclic Systems Using SCMNPs@BPy-SO3H as a Novel Magnetic Nanocatalyst

*Ke Chen  -  Hunan Polytechnic of Enviroment and Biology, China
Guangzu He  -  Hunan Polytechnic of Enviroment and Biology, China
Qiong Tang  -  Hunan Polytechnic of Enviroment and Biology, China
Qahtan A.Yousif  -  Department of Chemistry, College of Education, University of Al-Qadisiyah, Iraq
Received: 10 Dec 2019; Revised: 18 Mar 2020; Accepted: 24 Mar 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The SCMNPs@BPy-SO3H catalyst was prepared and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Afterwards, its capability was efficiently used to promote the one-pot, three-component synthesis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one derivatives. The strategy resulted in the desired products with excellent yields and short reaction times. The SCMNPs@BPy-SO3H catalyst was readily recovered using a permanent magnetic field and it was reused in six runs with a slight decrease in catalytic activity. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Multicomponent reaction; Solvent-free conditions; Magnetic nanocatalyst; SCMNPs@BPy-SO3H, pyrano[2,3-c]pyrazole; 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one

Article Metrics:

  1. Panella, B., Vargas, A., Baiker, A. (2009). Magnetically separable Pt catalyst for asymmetric hydrogenation. Journal of Catalysis, 261(1), 88-93. DOI: 10.1016/j.jcat.2008.11.002
  2. Arum, Y., Song, Y., Oh, J. (2011). Controlling the optimum dose of AMPTS functionalized-magnetite nanoparticles for hyperthermia cancer therapy. Applied Nanoscience, 1(4), 237-246. DOI: 10.1007/s13204-011-0032-1
  3. Amini, A., Sayyahi, S., Saghanezhad, S.J., Taheri, N. (2016). Integration of aqueous biphasic with magnetically recyclable systems: Polyethylene glycol-grafted Fe3O4 nanoparticles catalyzed phenacyl synthesis in water. Catalysis Communications, 78, 11-16. DOI: 10.1016/j.catcom.2016.01.036
  4. Sheykhan, M., Ma’mani, L., Ebrahimi, A., Heydari, A. (2011). Sulfamic acid heterogenized on hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles as a magnetic green interphase catalyst. Journal of Molecular Catalysis A: Chemical, 335(1-2), 253-261. DOI: 10.1016/j.molcata.2010.12.004
  5. Sayyahi, S., Mozafari, S., Saghanezhad, S.J. (2016). Fe3O4 nanoparticle-bonded β-cyclodextrin as an efficient and magnetically retrievable catalyst for the preparation of β-azido alcohols and β-hydroxy thiocyanate. Research on Chemical Intermediates, 42(2), 511-518. DOI: 10.1007/s11164-015-2037-y
  6. Gilbert, B., Katz, J.E., Denlinger, J.D., Yin, Y., Falcone, R., Waychunas, G.A. (2010). Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidized magnetite nanoparticles. The Journal of Physical Chemistry C, 114(50), 21994-22001. DOI: 10.1021/jp106919a
  7. Mazloum-Ardakani, M., Rajabzadeh, N., Firouzabadi, A.D., Benvidi, A., Abdollahi-Alibeik, M. (2014). A chemically modified electrode with hydroquinone derivative based on carbon nanoparticles for simultaneous determination of isoproterenol, uric acid, folic acid and tryptophan. Analytical Methods, 6(12), 4462-4468. DOI: 10.1039/C4AY00164H
  8. Kiasat, A.R., Nazari, S. (2012). Magnetic nanoparticles grafted with β-cyclodextrin-polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water. Journal of Molecular Catalysis A: Chemical, 365, 80-86. DOI: 10.1016/j.molcata.2012.08.012
  9. Chen, J., Zhu, X. (2016). Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples. Food chemistry, 200, 10-15. DOI: 10.1016/j.foodchem.2016.01.002
  10. Vayssieres, L., Chanéac, C., Tronc, E., Jolivet, J.P. (1998). Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. Journal of Colloid and Interface Science, 205(2), 205-212. DOI: 10.1006/jcis.1998.5614
  11. Hong, R.Y., Feng, B., Liu, G., Wang, S., Li, H.Z., Ding, J.M., Wei, D.G. (2009). Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. Journal of Alloys and Compounds, 476(1-2), 612-618. DOI: 10.1016/j.jallcom.2008.09.060
  12. Zhang, Q., Kang, J., Yang, B., Zhao, L., Hou, Z., Tang, B. (2016). Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chinese Journal of Catalysis, 37(3), 389-397. DOI: 10.1016/S1872-2067(15)61028-2
  13. Hafez, E.A.A., Elnagdi, M.H., Elagamey, A.G.A., Eltaweel, F.M.A.A. (1987). Nitriles in heterocyclic synthesis: novel synsthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c] quinoline derivatives. Heterocycles (Sendai), 26(4), 903-907. DOI: 10.3987/R-1987-04-0903
  14. Shaabani, A., Ghadari, R., Sarvary, A., Rezayan, A.H. (2009). Synthesis of highly functionalized bis (4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component Reaction. The Journal of Organic Chemistry, 74(11), 4372-4374. DOI: 10.1021/jo9005427
  15. Elinson, M.N., Dorofeev, A.S., Miloserdov, F.M., Ilovaisky, A.I., Feducovich, S.K., Belyakov, P.A., Nikishin, G.I. (2008). Catalysis of salicylaldehydes and two different C-H acids with electricity: first example of an efficient multicomponent approach to the design of functionalized medicinally privileged 2‐amino‐4H‐chromene scaffold. Advanced Synthesis & Catalysis, 350(4), 591-601. DOI: 10.1002/adsc.200700493
  16. Ellis, G.P. (1977). Chromenes, chromanones, and chromones-introduction. John Wiley, New York, NY. DOI: 10.1002/9780470187012.ch1
  17. Fisher, J.F., Meroueh, S.O., Mobashery, S. (2005). Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chemical Reviews, 105(2), 395-424. DOI: 10.1021/cr030102i
  18. Capodanno, D., Ferreiro, J.L., Angiolillo, D.J. (2013). Antiplatelet therapy: new pharmacological agents and changing paradigms. Journal of Thrombosis and Haemostasis, 11, 316-329. DOI: 10.1111/jth.12219
  19. Kuo, S.C., Huang, L.J., Nakamura, H. (1984). Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. Journal of Medicinal Chemistry, 27(4), 539-544. DOI: 10.1021/jm00370a020
  20. Mandha, S.R., Siliveri, S., Alla, M., Bommena, V.R., Bommineni, M.R., Balasubramanian, S. (2012). Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorganic & Medicinal Chemistry Letters, 22(16), 5272-5278. DOI: 10.1016/j.bmcl.2012.06.055
  21. Zaki, M.E., Soliman, H.A., Hiekal, O.A., Rashad, A.E. (2006). Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Zeitschrift für Naturforschung C, 61(1-2), 1-5. DOI: 10.1515/znc-2006-1-201
  22. Wang, J.L., Liu, D., Zhang, Z.J., Shan, S., Han, X., Srinivasula, S.M., Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proceedings of the National Academy of Sciences, 97(13), 7124-7129. DOI: 10.1073/pnas.97.13.7124
  23. Adibi, H., Hosseinzadeh, L., Farhadi, S., Ahmadi, F. (2013). Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile derivatives using borax with potential anticancer effects. J. Rep. Pharm. Sci., 2, 116-125.
  24. Waghmare, A.S., Pandit, S.S. (2017). DABCO catalyzed rapid one-pot synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in aqueous media. Journal of Saudi Chemical Society, 21(3), 286-290. DOI: 10.1016/j.jscs.2015.06.010
  25. Denzel, T., Hoehn, H. (1975). US. Patent 3903096 Chem. Abst, 83, 2026257.
  26. Abdelrazek, F.M., Metz, P., Metwally, N.H., El‐Mahrouky, S.F. (2006). Synthesis and molluscicidal activity of new cinnoline and pyrano[2,3‐c]pyrazole derivatives. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 339(8), 456-460. DOI: 10.1002/ardp.200600057
  27. Derabli, C., Boualia, I., Abdelwahab, A.B., Boulcina, R., Bensouici, C., Kirsch, G., Debache, A. (2018). A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel tacrine-pyranopyrazole derivatives. Bioorganic & Medicinal Chemistry Letters, 28(14), 2481-2484. DOI: 10.1016/j.bmcl.2018.08.008
  28. Moshtaghi Z.A., Eskandari, I., Khavasi, H.R. (2012). A Green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-Pot, multi-component reaction in water. Tetrahedron Letters, 53(41), 5519-5522. DOI: 10.1016/j.tetlet.2012.08.010
  29. Foloppe, N., Fisher, L.M., Howes, R., Potter, A., Robertson, A.G., Surgenor, A.E. (2006). Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorganic & Medicinal Chemistry, 14(14), 4792-4802. DOI: 10.1016/j.bmc.2006.03.021
  30. Safari, E., Hasaninejad, A. (2018). One‐pot, multi‐component synthesis of novel bis‐spiro pyranopyrazole derivatives in the presence of DABCO as an efficient and reusable solid base catalyst. ChemistrySelect, 3(12), 3529-3533. DOI: 10.1002/slct.201800410
  31. Guo, R.Y., An, Z.M., Mo, L.P., Yang, S.T., Liu, H.X., Wang, S.X., Zhang, Z.H. (2013). Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron, 69(47), 9931-9938. DOI: 10.1016/j.tet.2013.09.082
  32. Mecadon, H., Rohman, M.R., Rajbangshi, M., Myrboh, B. (2011). γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Letters, 52(19), 2523-2525. DOI: 10.1016/j.tetlet.2011.03.036
  33. Ebrahimi, J., Mohammadi, A., Pakjoo, V., Bahramzade, E., Habibi, A. (2012). Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. Journal of Chemical Sciences, 124(5), 1013-1017. DOI: 10.1007/s12039-012-0310-9
  34. Zolfigol, M.A., Tavasoli, M., Moosavi-Zare, A.R., Moosavi, P., Kruger, H.G., Shiri, M., Khakyzadeh, V. (2013). Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Advances, 3(48), 25681-25685. DOI: 10.1039/C3RA45289A
  35. Tangeti, V.S., Babu, K.R., Prasad, G.S., Ramu, T., Rao, C.V. (2018). Green chemical multicomponent approach for the synthesis of C3-pyranopyrazole-substituted coumarins. Journal of the Iranian Chemical Society, 15(4), 823-829. DOI: 10.1007/s13738-017-1281-z
  36. Sharma, A., Kumar, D., Manohar, P.U., Pande, S., Dalvi, A., Shukla, P. (2018). Functionalized pyranopyrazole molecules as corrosion inhibitors for mild copper metal in HCl solution: synthesis, theoretical studies, and physical investigations. Materials Research Express, 5(2), 025101.
  37. Zhou, C.F., Li, J.J., Su, W.K. (2016). Morpholine triflate promoted one-pot, four-component synthesis of dihydropyrano[2,3-c]pyrazoles. Chinese Chemical Letters, 27(11), 1686-1690. DOI: 10.1016/j.cclet.2016.05.010
  38. Azzam, S.H.S., Pasha, M.A. (2012). Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Letters, 53(50), 6834-6837. DOI: 10.1016/j.tetlet.2012.10.025
  39. Reddy, M.M., Jayashankara, V.P., Pasha, M.A. (2010). Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synthetic Communications, 40(19), 2930-2934. DOI: 10.1080/00397910903340686
  40. Ghorbani‐Vaghei, R., Izadkhah, V. (2018). Preparation and characterization of hexamethylenetetramine‐functionalized magnetic nanoparticles and their application as novel catalyst for the synthesis of pyranopyrazole derivatives. Applied Organometallic Chemistry, 32(2), e4025. DOI: 10.1002/aoc.4025
  41. Kanagaraj, K., Pitchumani, K. (2010). Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Letters, 51(25), 3312-3316. DOI: 10.1016/j.tetlet.2010.04.087
  42. Litvinov, Y.M., Shestopalov, A.A., Rodinovskaya, L.A., Shestopalov, A.M. (2009). New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro[(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1 H)-2-on-5′-carbonitriles. Journal of Combinatorial Chemistry, 11(5), 914-919. DOI: 10.1021/cc900076j
  43. Wu, M., Feng, Q., Wan, D., Ma, J. (2013). CTACl as catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synthetic Communications, 43(12), 1721-1726. DOI: 10.1080/00397911.2012.666315
  44. Brahmachari, G., Banerjee, B. (2014). Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustainable Chemistry & Engineering, 2(3), 411-422. DOI: 10.1021/sc400312n
  45. Nasab, M.J., Kiasat, A.R., Zarasvandi, R. (2018). β-Cyclodextrin nanosponge polymer: a basic and eco-friendly heterogeneous catalyst for the one-pot four-component synthesis of pyranopyrazole derivatives under solvent-free conditions. Reaction Kinetics, Mechanisms and Catalysis, 124(2), 767-778. DOI: 10.1007/s11144-018-1373-5
  46. Gujar, J.B., Chaudhari, M.A., Kawade, D.S., Shingare, M.S. (2014). Molecular sieves: an efficient and reusable catalyst for multi-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Tetrahedron Letters, 55(44), 6030-6033. DOI: 10.1016/j.tetlet.2014.08.127
  47. Paul, S., Pradhan, K., Ghosh, S., De, S.K., Das, A.R. (2014). Uncapped SnO2 quantum dot catalyzed cascade assembling of four components: a rapid and green approach to the pyrano[2,3-c]pyrazole and spiro-2-oxindole derivatives. Tetrahedron, 70(36), 6088-6099. DOI: 10.1016/j.tet.2014.02.077
  48. Jin, T.S., Liu, L.B., Zhao, Y., Li, T.S. (2005). Clean, One‐Pot Synthesis of 4H‐pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synthetic Communications, 35(14), 1859-1863. DOI: 10.1081/SCC-200064898
  49. Nagabhushana, H., Saundalkar, S.S., Muralidhar, L., Nagabhushana, B.M., Girija, C.R., Nagaraja, D., Jayashankara, V.P. (2011). α-Fe2O3 nanoparticles: An efficient, inexpensive catalyst for the one-pot preparation of 3,4-dihydropyrano[c]chromenes. Chinese Chemical Letters, 22(2), 143-146. DOI: 10.1016/j.cclet.2010.09.020
  50. Abdolmohammadi, S., Balalaie, S. (2007). Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Letters, 48(18), 3299-3303. DOI: 10.1016/j.tetlet.2007.02.135
  51. Peng, Y., Song, G. (2007). Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catalysis Communications, 8(2), 111-114. DOI: 10.1016/j.catcom.2006.05.031
  52. Seifi, M., Sheibani, H. (2008). High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Catalysis letters, 126(3-4), 275-279. DOI: 10.1007/s10562-008-9603-5
  53. Babu, N.S., Pasha, N., Rao, K.V., Prasad, P.S., Lingaiah, N. (2008). A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Letters, 49(17), 2730-2733. DOI: 10.1016/j.tetlet.2008.02.154
  54. Banerjee, S., Horn, A., Khatri, H., Sereda, G. (2011). A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron letters, 52(16), 1878-1881. DOI: 10.1016/j.tetlet.2011.02.031
  55. Heravi, M.M., Jani, B.A., Derikvand, F., Bamoharram, F.F., Oskooie, H.A. (2008). Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62· 18H2O as a green and recyclable catalyst. Catalysis Communications, 10(3), 272-275. DOI: 10.1016/j.catcom.2008.08.023
  56. Khurana, J.M., Chaudhary, A. (2012). Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c]pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chemistry Letters and Reviews, 5(4), 633-638. DOI: 10.1080/17518253.2012.691183
  57. Al-Matar, H.M., Khalil, K.D., Adam, A.Y., Elnagdi, M.H. (2010). Green one pot solvent-free synthesis of pyrano[2,3-c]pyrazoles and pyrazolo[1,5-a]pyrimidines. Molecules, 15(9), 6619-6629. DOI: 10.3390/molecules15096619
  58. Vasuki, G., Kumaravel, K. (2008). Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Letters, 49(39), 5636-5638. DOI: 10.1016/j.tetlet.2008.07.055
  59. Tayade, Y.A., Padvi, S.A., Wagh, Y.B., Dalal, D.S. (2015). β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4′-pyrano[2,3-c]pyrazole in aqueous medium. Tetrahedron Letters, 56(19), 2441-2447. DOI: 10.1016/j.tetlet.2015.03.084
  60. Shi, D., Mou, J., Zhuang, Q., Niu, L., Wu, N., Wang, X. (2004). Three‐component one‐pot synthesis of 1,4‐dihydropyrano[2,3‐c]pyrazole derivatives in aqueous media. Synthetic communications, 34(24), 4557-4563. DOI: 10.1081/SCC-200043224
  61. Peng, Y., Song, G., Dou, R. (2006). Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media. Green Chemistry, 8(6), 573-575. DOI: 10.1039/B601209D
  62. Bihani, M., Bora, P.P., Bez, G. (2013). A practical catalyst-free synthesis of 6-amino-4 alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile in aqueous medium. Journal of Chemistry, 920719. DOI: 10.1155/2013/920719
  63. Mehrabi, H., Abusaidi, H. (2010). Synthesis of biscoumarin and 3,4-dihydropyrano[c] chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. Journal of the Iranian Chemical Society, 7(4), 890-894. DOI: 10.1007/BF03246084
  64. Khoobi, M., Ma’mani, L., Rezazadeh, F., Zareie, Z., Foroumadi, A., Ramazani, A., Shafiee, A. (2012). One-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes using inorganic-organic hybrid magnetic nanocatalyst in water. Journal of Molecular Catalysis A: Chemical, 359, 74-80. DOI: 10.1016/j.molcata.2012.03.023
  65. Shaabani, A., Samadi, S., Badri, Z., Rahmati, A. (2005). Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catalysis letters, 104(1-2), 39-43. DOI: 10.1007/s10562-005-7433-2
  66. Ziarani, G.M., Badiei, A., Azizi, M., Zarabadi, P. (2011). Synthesis of 3, 4-dihydropyrano[c]chromene derivatives using sulfonic acid functionalized silica (SiO2PrSO3H). Iranian Journal of Chemistry and Chemical Engineering, 30, 59-65.
  67. Xiang-Shan, W., Zhao-Sen, Z., Da-Qing, S., Xian-Yong, W., Zhi-Min, Z. (2005). One-pot synthesis of 2-amino-4-aryl-4H-pyrano[3,2-c]coumarin derivatives using KF/Al2O3 as catalyst. The Journal of Organic Chemistry, 25(9), 1138-1141.
  68. Poliakoff, M., Licence, P. (2007). Green chemistry. Nature, 450(7171), 810-812. DOI: 10.1038/450810a
  69. Khurana, J.M., Nand, B., Saluja, P. (2010). DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes in aqueous medium. Tetrahedron, 66(30), 5637-5641. DOI: 10.1016/j.tet.2010.05.082
  70. Wang, H.J., Lu, J., Zhang, Z.H. (2010). Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatshefte für Chemie-Chemical Monthly, 141(10), 1107-1112. DOI: 10.1007/s00706-010-0383-4
  71. Mehrabi, H., Kazemi-Mireki, M. (2011). CuO nanoparticles: an efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chinese Chemical Letters, 22(12), 1419-1422. DOI: 10.1016/j.cclet.2011.06.003
  72. Niknam, K., Piran, A. (2013). Silica-grafted ionic liquids as recyclable catalysts for the synthesis of 3,4-dihydropyrano[c]chromenes and pyrano[2,3-c]pyrazoles. Green and Sustainable Chemistry, 3, 1-8. DOI: 10.4236/gsc.2013.32A001
  73. Zavar, S. (2017). A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arabian Journal of Chemistry, 10, S67-S70. DOI: 10.1016/j.arabjc.2012.07.011
  74. Montaghami, A., Montazeri, N. (2014). An efficient method for the one-pot, three-component synthesis of 3,4-dihydropyrano[c]chromenes catalyzed by nano Al2O3. Oriental Journal of Chemistry, 30(3), 1361-1364. DOI: 10.13005/ojc/300355

No citation recorded.