Activity and Stability of Immobilized Lipase for Utilization in Transesterification of Waste Cooking Oil

Azianna Gusniah  -  Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Malaysia
Harumi Veny  -  Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Malaysia
*Fazlena Hamzah  -  Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Malaysia
Received: 5 Dec 2019; Revised: 28 Jan 2020; Accepted: 29 Jan 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: International Symposium of Green Engineering and Technology 2019 (ISGET 2019)
Language: EN
Full Text:
Statistics: 75 45

Abstract

Biodiesel is fatty acid methyl ester that commonly derived from vegetable oils and animal fats that can be produced through enzymatic transesterification using lipase. In this study, three different types of lipase were used, which are Lipase Immobilized Pseudomonas cepacia, PcL, Thermomyces lanuginosus, TLIM, and Candida Antarctica A (recombinant from Aspergillus oryzae), CALA. These lipases were compared based on their activity at different pH (6-10), temperature (30-50 °C), activation energy, and amount of lipase loading for hydrolysis of p-NPA into n-NP. The result indicates that among the lipase used in the study, CALA is the preferable biocatalyst in the hydrolysis of p-NPA due to the minimum energy required and higher enzymatic activity at 20 mg of enzyme loading. PcL and CALA used in the study gave the optimum activity at pH 9 except for TLIM at pH 8 and the optimum temperature at 40 °C. The kinetic data obtained for CALA in this reaction were Km = 57.412 mM and Vm = 70 µM/min. This finding shows that CALA is beneficial biocatalysts for the transesterification process to obtain a higher product with lower activation energy. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords
Enzyme Activity; Immobilized Lipase; Transesterifications; Waste Cooking Oil

Article Metrics:

  1. Borba, B.S.M.C., Lucena, A.F.P., Cunha, B.S.L., Szklo, A., Schaeffer, R. (2017). Diesel imports dependence in Brazil: A demand decomposition analysis. Energy Strateg. Rev., 18, 63–72.
  2. Patil, P.D., Gude, V.G., Reddy, H.K., Muppaneni, T., Deng, S. (2012). Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes. J. Environ. Prot. (Irvine,. Calif)., 03(01), 107–113.
  3. Raqeeb, M.A.R.B. (2015). Biodiesel Production from Waste Cooking Oil. J. Chem. Pharm. Reseacrh., 7 (12), 670-681.
  4. Santin, C.M.T., Michelin, S., Scherer, R.P., Valério, A., Luccio, M.D., Oliveira, D., Oliveira, J.V. (2017). Comparison of macauba and soybean oils as substrates for the enzymatic biodiesel production in ultrasound-assisted system. Ultrason. Sonochem., 35, 525–528.
  5. Nel, W.P., Cooper, C.J. (2009). Implications of fossil fuel constraints on economic growth and global warming. Energy Policy, 37(1), 166–180.
  6. Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., Endut, A. (2016). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 70, 1040–1051.
  7. Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol., 91(3), 289–295.
  8. Xie, W., Fan, M. (2014). Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst. Chem. Eng. J., 239, 60–67.
  9. Farooq, M., Ramli, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew. Energy, 76, 362–368.
  10. Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., Lee, H.V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev., 67, 1225–1236.
  11. Pourzolfaghar, H., Abnisa, F., Daud, W.M.A.W., Aroua, M.K. (2016). A review of the enzymatic hydroesterification process for biodiesel production. Renew. Sustain. Energy Rev., 61, 245–257.
  12. Duarte, S.H., del Peso Hernández, G.L., Canet, A., Benaiges, M.D., Maugeri, F., Valero, F. (2015). Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Bioresour. Technol., 183, 175–180.
  13. Surendhiran, D., Vijay, M. (2013). Interesterification of Marine Microalga Chlorella salina Oil with Immobilized Lipase as Biocatalyst Using Methyl Acetate as an Acyl Acceptor. Int. J. Environ. Bioenergy., 8(2), 68–85.
  14. Yu, C.Y., Huang, L.Y., Kuan, I.C., Lee, S.L. (2013). Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int. J. Mol. Sci., 14(12), 24074–24086.
  15. Kumar, G., Kumar, D., Poonam, P., Johari, R., Singh, C.P. (2011). Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication. Ultrason. Sonochem., 18(5), 923–927.
  16. Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev., 44, 182–197.
  17. Gupta, S., Bhattacharya, A., Murthy, C.N. (2013). Tune to immobilize lipases on polymer membranes: Techniques, factors and prospects. Biocatal. Agric. Biotechnol., 2(3), 171–190.
  18. Willerding, A.L., Da Rocha Carvalho Neto, F.G.M., Da Gama, A.M., Carioca, C.R.F., De Oliveira, L.A. (2012). Hydrolytic activity of bacterial lipases in amazonian vegetable oils. Quim. Nova, 35(9), 1782–1786.
  19. Babaki, M., Yousefi, M., Habibi, Z., Mohammadi, M., Yousefi, P., Mohammadi, J., Brask, J. (2016). Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: Effect of water, t-butanol and blue silica gel contents. Renew. Energy, 91, 196–206.
  20. Pencreac’h, G., Leullier, M., Baratti, J.C. (1997). Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol. Bioeng., 56(2), 181–189.
  21. Bailey, J.E., Ollis, D.F. (2011). Biochemical Engineering Fundamental. New York: McGRAW- HILL International.
  22. Furlan, S. A., Pant, H.K. (2006). General properties. In Enzyme Technology. Pandey, A., Webb, C., Soccol, C.R., Larroche, C. Eds. New Delhi: Springer, 11–35.
  23. Bisswanger, H. (2014). Enzyme assays. Perspect. Sci., 1(1–6), 41–55.
  24. Campbell, M.K., Farrell, S.O. (2012). Biochemistry. Internatio. Mary Finch.
  25. Marangoni, A.G. (2003). Enzyme kinetics: a modern approach, vol. 27 ed. 2, United States of America: John Wiley & Sons, Inc.
  26. Rauwerdink, A., Kazlauskas, R.J. (2017). How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β- Hydrolase Fold Enzymes Alissa. HHS Public Access, 5(10), 1252–1260.
  27. Inamdar, S.T.A. (2007). Biochemical Engineering: Principle and Concepts. New Delhi: Asoke K. Ghosh, Prentice-Hall of India.
  28. Shuler, M.L., Kargi, F. (2002). Bioprocess Engineering Basic Concepts, The Physic. Prentice Hall Ptr. Int.
  29. Subhedar P.B., Gogate, P. R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrason. Sonochem., 29, 67–75.
  30. Raita, M., Arnthong, J., Champreda, V., Laosiripojana, N. (2015). Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process. Technol., 134, 189–197.
  31. Caetano, N.S., Teixeira, J.I.M., Mata, T.M. (2012). Enzymatic Catalysis of Vegetable Oil with Ethanol in the Presence of Co-solvents. Chem. Eng. Technol., 26, 81–86.
  32. Ognjanovic, N., Bezbradica, D., Knezevic-Jugovic, Z. (2009). Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresour. Technol., 100(21), 5146–5154.
  33. Amini, Z., Ong, H.C., Harrison, M.D., Kusumo, F., Mazaheri, H., Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag., 132, 82–90.
  34. Lopresto, C.G., Naccarato, S., Albo, L., Paola, M.G., Chakraborty, S., Curcio, S., Calabrò, V. (2015). Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol. Environ. Saf., 121, 229–235.
  35. David, A.V., Peter, F.S., James, E.A. (2006). Environmental Biology for Engineerings and Scientists. New Jersey: John Wiley & Sons, Inc.
  36. Ferreira, M.M., Santiago, F.L.B., Silva, N.A.G.D., Luiz, J.H.H., Fernandéz-Lafuente, R., Mendes, A.A., Hirata, D.B. (2018). Different strategies to immobilize lipase from Geotrichum candidum: Kinetic and thermodynamic studies. Process Biochem., 67, 55–63.
  37. Mostafa, F.A., Abdel Wahab, W.A., Salah, H.A., Nawwar, G.A.M., Esawy, M.A. (2018). Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int. J. Biol. Macromol., 119, 232–239.
  38. Onoja, E., Chandren, S., Razak, F.I.A., Wahab, R.A. (2018). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng., 91, 105–118.
  39. Bhangu, S.K., Gupta, S., Ashokkumar, M. (2017). Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrason. Sonochem., 34, 305–309.
  40. Kademi, A., Leblanc, D., Houde, A. (2005). Lipases, in Enzyme Technology, Pandey, A., Webb, C., Soccol, C.R., Larroche, C. Eds. India: Springer, 297–318.
  41. Romero, M.D., Calvo, L., Alba, C., Daneshfar, A. (2007). A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. J. Biotechnol., 127(2), 269–277.
  42. Hung, T.C., Giridhar, R., Chiou, S.H., Wu, W.T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B Enzym., 26(1–2), 69–78.
  43. Chiou, S.H., Wu, W.T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25(2), 197–204.
  44. Kuo, C.H., Liu, Y.C., Chang, C.M.J., Chen, J.H., Chang, C., Shieh, C.J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe 3O4 nanoparticles. Carbohydr. Polym., 87(4), 2538–2545.
  45. Azócar, L., Navia, R., Beroiz, L., Jeison, D., Ciudad, G. (2014). Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: A strategy to improve lipase performance in a semi-continuous reactor. N. Biotechnol., 31(5), 422–429.
  46. Pereira, E., De Castro, H., De Moraes, F., Zanin, G. (2001). Kinetic studies of lipase from Candida rugosa. Appl. Biochem. Biotechnol., 91–93, 739–752.
  47. Al-Zuhair, S. (2006). Kinetics of Hydrolysis of Tributyrin By Lipase. J. Eng. Sci. Technol., 1(1), 50–58.
  48. Gofferjé, G., Stäbler, A., Herfellner, T., Schweiggert-Weisz, U., Flöter, E. (2014). Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei. J. Mol. Catal. B Enzym., 107, 1–7.
  49. Murcia, M.D., Gómez, M., Gómez, E., Gómez, J.L., Hidalgo, A.M., Sánchez, A., Vergara, P. (2018). Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chem. Eng. Res. Des., 138, 135–143.
  50. Juneidi, I., Hayyan, M., Hashim, M.A., Hayyan, A. (2017). Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem. Eng. J., 117, 129–138.