skip to main content

Activity and Stability of Immobilized Lipase for Utilization in Transesterification of Waste Cooking Oil

Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

Received: 5 Dec 2019; Revised: 28 Jan 2020; Accepted: 29 Jan 2020; Available online: 28 Feb 2020; Published: 1 Apr 2020.
Editor(s): Istadi Istadi, Harumi Veny
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Biodiesel is fatty acid methyl ester that commonly derived from vegetable oils and animal fats that can be produced through enzymatic transesterification using lipase. In this study, three different types of lipase were used, which are Lipase Immobilized Pseudomonas cepacia, PcL, Thermomyces lanuginosus, TLIM, and Candida Antarctica A (recombinant from Aspergillus oryzae), CALA. These lipases were compared based on their activity at different pH (6-10), temperature (30-50 °C), activation energy, and amount of lipase loading for hydrolysis of p-NPA into n-NP. The result indicates that among the lipase used in the study, CALA is the preferable biocatalyst in the hydrolysis of p-NPA due to the minimum energy required and higher enzymatic activity at 20 mg of enzyme loading. PcL and CALA used in the study gave the optimum activity at pH 9 except for TLIM at pH 8 and the optimum temperature at 40 °C. The kinetic data obtained for CALA in this reaction were Km = 57.412 mM and Vm = 70 µM/min. This finding shows that CALA is beneficial biocatalysts for the transesterification process to obtain a higher product with lower activation energy. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Enzyme Activity; Immobilized Lipase; Transesterifications; Waste Cooking Oil
Funding: Universiti Teknologi MARA (UiTM) under contract Dana/KCM 5/3/Lestari (132/2017) and 600-IRMI/DANA 5/3/REI (0009/2016))

Article Metrics:

Article Info
Section: International Symposium of Green Engineering and Technology 2019 (ISGET 2019)
Language : EN
  1. Borba, B.S.M.C., Lucena, A.F.P., Cunha, B.S.L., Szklo, A., Schaeffer, R. (2017). Diesel imports dependence in Brazil: A demand decomposition analysis. Energy Strateg. Rev., 18, 63–72
  2. Patil, P.D., Gude, V.G., Reddy, H.K., Muppaneni, T., Deng, S. (2012). Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes. J. Environ. Prot. (Irvine,. Calif)., 03(01), 107–113
  3. Raqeeb, M.A.R.B. (2015). Biodiesel Production from Waste Cooking Oil. J. Chem. Pharm. Reseacrh., 7 (12), 670-681
  4. Santin, C.M.T., Michelin, S., Scherer, R.P., Valério, A., Luccio, M.D., Oliveira, D., Oliveira, J.V. (2017). Comparison of macauba and soybean oils as substrates for the enzymatic biodiesel production in ultrasound-assisted system. Ultrason. Sonochem., 35, 525–528
  5. Nel, W.P., Cooper, C.J. (2009). Implications of fossil fuel constraints on economic growth and global warming. Energy Policy, 37(1), 166–180
  6. Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., Endut, A. (2016). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 70, 1040–1051
  7. Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol., 91(3), 289–295
  8. Xie, W., Fan, M. (2014). Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst. Chem. Eng. J., 239, 60–67
  9. Farooq, M., Ramli, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew. Energy, 76, 362–368
  10. Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., Lee, H.V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev., 67, 1225–1236
  11. Pourzolfaghar, H., Abnisa, F., Daud, W.M.A.W., Aroua, M.K. (2016). A review of the enzymatic hydroesterification process for biodiesel production. Renew. Sustain. Energy Rev., 61, 245–257
  12. Duarte, S.H., del Peso Hernández, G.L., Canet, A., Benaiges, M.D., Maugeri, F., Valero, F. (2015). Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Bioresour. Technol., 183, 175–180
  13. Surendhiran, D., Vijay, M. (2013). Interesterification of Marine Microalga Chlorella salina Oil with Immobilized Lipase as Biocatalyst Using Methyl Acetate as an Acyl Acceptor. Int. J. Environ. Bioenergy., 8(2), 68–85
  14. Yu, C.Y., Huang, L.Y., Kuan, I.C., Lee, S.L. (2013). Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int. J. Mol. Sci., 14(12), 24074–24086
  15. Kumar, G., Kumar, D., Poonam, P., Johari, R., Singh, C.P. (2011). Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication. Ultrason. Sonochem., 18(5), 923–927
  16. Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev., 44, 182–197
  17. Gupta, S., Bhattacharya, A., Murthy, C.N. (2013). Tune to immobilize lipases on polymer membranes: Techniques, factors and prospects. Biocatal. Agric. Biotechnol., 2(3), 171–190
  18. Willerding, A.L., Da Rocha Carvalho Neto, F.G.M., Da Gama, A.M., Carioca, C.R.F., De Oliveira, L.A. (2012). Hydrolytic activity of bacterial lipases in amazonian vegetable oils. Quim. Nova, 35(9), 1782–1786
  19. Babaki, M., Yousefi, M., Habibi, Z., Mohammadi, M., Yousefi, P., Mohammadi, J., Brask, J. (2016). Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: Effect of water, t-butanol and blue silica gel contents. Renew. Energy, 91, 196–206
  20. Pencreac’h, G., Leullier, M., Baratti, J.C. (1997). Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol. Bioeng., 56(2), 181–189
  21. Bailey, J.E., Ollis, D.F. (2011). Biochemical Engineering Fundamental. New York: McGRAW- HILL International
  22. Furlan, S. A., Pant, H.K. (2006). General properties. In Enzyme Technology. Pandey, A., Webb, C., Soccol, C.R., Larroche, C. Eds. New Delhi: Springer, 11–35
  23. Bisswanger, H. (2014). Enzyme assays. Perspect. Sci., 1(1–6), 41–55
  24. Campbell, M.K., Farrell, S.O. (2012). Biochemistry. Internatio. Mary Finch
  25. Marangoni, A.G. (2003). Enzyme kinetics: a modern approach, vol. 27 ed. 2, United States of America: John Wiley & Sons, Inc
  26. Rauwerdink, A., Kazlauskas, R.J. (2017). How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β- Hydrolase Fold Enzymes Alissa. HHS Public Access, 5(10), 1252–1260
  27. Inamdar, S.T.A. (2007). Biochemical Engineering: Principle and Concepts. New Delhi: Asoke K. Ghosh, Prentice-Hall of India
  28. Shuler, M.L., Kargi, F. (2002). Bioprocess Engineering Basic Concepts, The Physic. Prentice Hall Ptr. Int
  29. Subhedar P.B., Gogate, P. R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrason. Sonochem., 29, 67–75
  30. Raita, M., Arnthong, J., Champreda, V., Laosiripojana, N. (2015). Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process. Technol., 134, 189–197
  31. Caetano, N.S., Teixeira, J.I.M., Mata, T.M. (2012). Enzymatic Catalysis of Vegetable Oil with Ethanol in the Presence of Co-solvents. Chem. Eng. Technol., 26, 81–86
  32. Ognjanovic, N., Bezbradica, D., Knezevic-Jugovic, Z. (2009). Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresour. Technol., 100(21), 5146–5154
  33. Amini, Z., Ong, H.C., Harrison, M.D., Kusumo, F., Mazaheri, H., Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag., 132, 82–90
  34. Lopresto, C.G., Naccarato, S., Albo, L., Paola, M.G., Chakraborty, S., Curcio, S., Calabrò, V. (2015). Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol. Environ. Saf., 121, 229–235
  35. David, A.V., Peter, F.S., James, E.A. (2006). Environmental Biology for Engineerings and Scientists. New Jersey: John Wiley & Sons, Inc
  36. Ferreira, M.M., Santiago, F.L.B., Silva, N.A.G.D., Luiz, J.H.H., Fernandéz-Lafuente, R., Mendes, A.A., Hirata, D.B. (2018). Different strategies to immobilize lipase from Geotrichum candidum: Kinetic and thermodynamic studies. Process Biochem., 67, 55–63
  37. Mostafa, F.A., Abdel Wahab, W.A., Salah, H.A., Nawwar, G.A.M., Esawy, M.A. (2018). Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int. J. Biol. Macromol., 119, 232–239
  38. Onoja, E., Chandren, S., Razak, F.I.A., Wahab, R.A. (2018). Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng., 91, 105–118
  39. Bhangu, S.K., Gupta, S., Ashokkumar, M. (2017). Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrason. Sonochem., 34, 305–309
  40. Kademi, A., Leblanc, D., Houde, A. (2005). Lipases, in Enzyme Technology, Pandey, A., Webb, C., Soccol, C.R., Larroche, C. Eds. India: Springer, 297–318
  41. Romero, M.D., Calvo, L., Alba, C., Daneshfar, A. (2007). A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. J. Biotechnol., 127(2), 269–277
  42. Hung, T.C., Giridhar, R., Chiou, S.H., Wu, W.T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B Enzym., 26(1–2), 69–78
  43. Chiou, S.H., Wu, W.T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25(2), 197–204
  44. Kuo, C.H., Liu, Y.C., Chang, C.M.J., Chen, J.H., Chang, C., Shieh, C.J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe 3O4 nanoparticles. Carbohydr. Polym., 87(4), 2538–2545
  45. Azócar, L., Navia, R., Beroiz, L., Jeison, D., Ciudad, G. (2014). Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: A strategy to improve lipase performance in a semi-continuous reactor. N. Biotechnol., 31(5), 422–429
  46. Pereira, E., De Castro, H., De Moraes, F., Zanin, G. (2001). Kinetic studies of lipase from Candida rugosa. Appl. Biochem. Biotechnol., 91–93, 739–752
  47. Al-Zuhair, S. (2006). Kinetics of Hydrolysis of Tributyrin By Lipase. J. Eng. Sci. Technol., 1(1), 50–58
  48. Gofferjé, G., Stäbler, A., Herfellner, T., Schweiggert-Weisz, U., Flöter, E. (2014). Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei. J. Mol. Catal. B Enzym., 107, 1–7
  49. Murcia, M.D., Gómez, M., Gómez, E., Gómez, J.L., Hidalgo, A.M., Sánchez, A., Vergara, P. (2018). Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chem. Eng. Res. Des., 138, 135–143
  50. Juneidi, I., Hayyan, M., Hashim, M.A., Hayyan, A. (2017). Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem. Eng. J., 117, 129–138

Last update:

No citation recorded.

Last update: 2021-11-30 04:43:59

  1. Lipase-PDA-TiO2 NPs: An emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil

    Zulfiqar A.. Renewable Energy, 127 , 2021. doi: 10.1016/j.renene.2020.12.135
  2. Spirogyra oil-based biodiesel: Response surface optimization of chemical and enzymatic transesterification and exhaust emission behavior

    Sohail S.. Catalysts, 10 (10), 2020. doi: 10.3390/catal10101214
  3. Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with lipase: Candida antarctica A for biodiesel synthesis

    Peffi Ferreira L.F.. RSC Advances, 10 (63), 2020. doi: 10.1039/d0ra06215d