Modification, Characterization, and Catalytic Application of Mesolite for One Pot Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones

Ganesh Trambakrao Pawar -  Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004,, India
Sachin Pandit Gadekar -  Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004,, India
Balasaheb R. Arbad -  Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004,, India
*Machhindra Karbhari Lande -  Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004,, India
Received: 25 Aug 2016; Published: 30 Apr 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

Natural mesolite type zeolite was collected, modified by sulphuric acid treatment and characterized by using Powder-X ray diffraction, Scanning electron microscopy and Energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Temperature programmed ammonia desorption, Brunauer-Emmer-Teller surface area analysis. Modified dealuminated mesolite shows an efficient catalytic activity for one pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones derivatives, via one pot three component condensation of benzaldehyde, ethylacetoacetate and hydroxylamine hydrochloride. Present method offers several advantages over the reported methods like a simple and inexpensive modification of catalyst, mild reaction condition, easy separation of catalyst, simple work-up procedure, nonchromatographic isolation and purification desired product and excellent yield. Furthermore, catalyst could be reused without significant loose in activity. Copyright © 2017 BCREC GROUP. All rights reserved

Received: 25th August 2016; Revised: 10th October 2016; Accepted: 17th October 2016

How to Cite: Pawar, G.T., Gadekar, S.P., Arbad, B.R., Lande, M.K. (2017). Modification, Characterization, and Catalytic Application of Mesolite for One Pot Synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1): 32-40 (doi:10.9767/bcrec.12.1.655.32-40)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.655.32-40

 

Keywords
3-methyl-4-arylmethylene-isoxazol-5(4H)-ones; benzaldehyde; ethylacetoacetate; hyroxylaminehydrochloride; modification of mesolite; natural zeolite

Article Metrics:

  1. Tundo, P., Anastas, P., Breen, J., Collins, T., Memoli, S., Miyamoto, J., Polyakoff, M., Tumas, W. (2000) Synthetic pathways and process in green chemistry. Pure Appl. Chem., 72: 1207-1228.
  2. Sheldon, R.A. (1997) Catalysis: Key to west minimization. J. Chem. Tech. Biotechnol., 68: 381-388.
  3. Breck, D.W. (1974). Zeolite Molecular Sieves, John Wiley, New York, 4.
  4. Baghbanian, S.M., Rezaei, N., Tashakkorin, H. (2013). Nanozeolite Clinoptilolite as a Highly Efficient Heterogeneous Catalyst for the Synthesis of Various 2-amino-4H-chromene Derivatives in Aqueous Media. Green Chem., 15: 3446-3450.
  5. Lopes, J.H., Nogueira, F.G., Goncalves, M., Oliveira, L.C. (2015). Modified Zeolites with Transition Metals Cu and Fe for Removal of Methylene Blue from Aqueous Medium: Mass Spectrometry Study. Bull. Chem. Reac. Eng. Catal., 10: 237-248.
  6. Wang, S., Zhu, Z.H. (2006). Ammonia Removal from Leachate Solution using Natural Chinese Clinoptilolite. J. Hazardous Material. 136: 946-995
  7. Smith, K., El-Hiti, G.A. (2011). Use of Zeolites for Greener and more Para-selective Electrophilic Aromatic Substitution Reactions. Green Chem., 13: 1579-1608.
  8. Sheemol, V.N., Tayagi, B., Jasara, R.V. (2004). Acylation of Toluene using Rare Earth Cation Exchanged Zeolite β as Solid Acid Catalyst. J. Mol. Catal. A., 215: 201-208.
  9. Prochazkova, D., Kurfirtova, L., Pavlatova, J. (2012). Acylation of P-xylene over Zeolites. Catalysis Today. 179: 78-84.
  10. Kubicka, D., Kikthyanin, O. (2015) Opportunities for zeolites in biomass upgrading-Lessons from the refining and petrochemical industry. Catalysis Today, 243: 10-22.
  11. Gillet, P., Malezieux, J.M., Itie, J.P. (1996). Phase Changes and Amorphization of Zeolites at High Pressures: The Case of Scolecite and Mesolite. American Mineralogist. 81: 651-657.
  12. Valtchev, V., Majano, G., Mintova, S., Ramirez, J.P. (2013). Tailored Crystalline Microporous Materials by Post-synthesis Modification. Chemical Society Review. 42: 263-290.
  13. Shailaja, M., Manjula, A., Rao, B.V. (2011). Synthesis of Novel 3,5-disubstituted-4,5 trisubstituted Isoxazoles and their Biological Activity. Indian J. Chem., 50(B): 214-222.
  14. Bindu, P.J., Mahadenvan, K.M., Ravikuar Naik, T.R. (2012). An efficient one-pot synthesis and photoinduced DNA cleavage studies of 2-chloro-3-(5-aryl-4,5-dihydroisoxazol-3-yl) quinolines. Bio. Med. Chem. Lett., 22: 6095-6098.
  15. Silva, N.M., Tributino, J.L.M., Miranda, A.L. P., Barreiro, E.J., Carlos, A.M. (2002). New Isoazole Derivatives Designed as Nicotinic Acetylcholine Receptor Ligand Candidates. Eru. J. Med. Chem., 37: 163-170.
  16. Jin, Z. (2011). quinoline, quinazoline and acridione alkaloids. Nat. Prod. Rep., 28: 1143-1191.
  17. Zhang, X.H., Zhan, Y.H., Chen, D., Wang, F., Wang, L.Y. (2012). Merocyanine Dyes Containing an Isoazolone Nucleus: Synthesis, X-ray Crystal Structures, Spectroscopic Properties and DFT Studies. Dyes and Pigments. 93: 1408-1415.
  18. Zhang, X. H., Wang, L. Y., Zhan, Y. H., Fu. Y. E., Zai, G. H., Wen. Z. Y. (2011) Synthesis and structural studies of 4-[(5-methoxy-1H-indole-3-yl)-methylene]-3-methyl-isoxazole-5-one by X-ray crystallography, NMR spectroscopy, and DFT calculation. J. Mol. Struct., 994: 371-378.
  19. Yang, Z., Zhang, K., Gong, F., Li, S., Chen, J., Ma, J.S., Sobenia, L.N., Mikhaleva, A.I., Yang, G., Trofirmov, B.A. (2011). A New Fluorescent Chemosensor for Fluoride Anion based on a Pyrrole-isoxazole Derivative. Beilstein J. Org. Chem., 7: 46-52.
  20. Kiyani, H., Ghorbani, F. (2013). Potassium Phthalimide as Efficient Basic Organocatalyst for the Synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in Aqueous Medium. J. Soudi Chem. Soc., Article In Press
  21. (doi: 10.1016/j.jscs.2013.11.002)
  22. Kiyani, H., Kannani, A., Ajloo, D., Ghorbani, F., Vakili, M. Bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene) isoxazol-5(4H)-one. Res. Chem. Intermed. doi 10.1007/s11164-014-1857-5.
  23. Kiyani, H., Jabbari, M., Mosallanezhad, A. (2014). Efficient Three Component Synthesis of 3,4-disubstitutedisoxazol-5(4H)-ones in Green Media, Jordan J. Chem. 9(4): 279-288.
  24. Khandebharad, A.U., Gill, C.H., Agrawal, B.R. (2015). Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones Catalyzed by Tartaric Acid in Aqueous Media. Res. J. Chem. Sci. 5(5): 27-32.
  25. Kiyani, H., Ghorbani, F. (2013). Synthesis of Arylmethylidene-isoxazol-5(4H)-ones via Three-Component Reaction in Water Catalyzed by Sodium Tetraborate. Open. J. Org. Chem. 1: 9-15.
  26. Mirzazadeh, M., Mahadavina, G.H. (2012). Fast and Efficient Synthesis of 4-Arylidene-3-phenylisoxazol-5-ones E-J. Chem., 9(1): 425-429.
  27. Liu, Q., Zhang, Ya-Nan (2011). One-pot Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by Sodium Benzoate in Aqueous Media: A Green Chemistry Strategy. Bull. Korean Chem. Soc. 32(10): 3559-3560.
  28. Fozooni, S., Hosserinzadeh, N.G., Hamidian, H., Akhgar, M.R. (2013). Nano Fe2O3, Clinoptilolite and H3PW12O40 as Efficient Catalysts for Solvent-Free Synthesis of 5(4H)- Isoxazolone under Microwave Irradiation Conditions. J. Braz. Chem. Soc., 24(10): 1649-1655.
  29. Heravi, M.M., Derikvand, F., Haeri, A., Oskooie, A.H., Bamoharram, F.F. (2008). Heteropolyacids as Green and Reusable Catalysts for the Synthesis of Isoxazole Derivatives. Synth. Commun., 38(1): 135-140.
  30. Saikh, F., Das, J., Ghosh, S. (2013). Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones by Visible Light in Aqueous Ethanol. Tetrahedron Lett., 54: 4679-4682.
  31. Rajanarendar, E., Rao, E.K., Karunakr, D., (2006). Microwave Assisted Rapid and Efficient Synthesis of 2,1-Benzoisoxazoles. Indian J. Chem., 45(B): 805-807.
  32. Ablajan, K., Xiamuxi, H. (2011). The Convenient Synthesis of 4-Arylmethylidene-4, 5-Dihydro-3-phenylisoxazol-5-ones. Chin. Chem. Lett., 22: 151-154.
  33. Magar, R.R., Pawar, G.T., Arbad, B.R. Lande, M.K. (2016). Fe-MCM-22: An Efficient Solid acid Catalyst for One Pot Four Component Synthesis of 1H-pyrazolo [1,2-b] phthalazine-5, 10-dione derivatives. Adv. Org. Chem. Lett., 3(1): 8-14
  34. Pawar, G.T., Magar, R.R., Lande, M.K. (2016). Mesolite Catalyzed One Pot Synthesis of Quinoline-3-0carboniotrile Derivatives. Iranian J. Catal., 6: 355-362
  35. Treacy, M.M.J., Higgins, J.B. Collection of simulated XRD powder patterns for zeolite.
  36. Kondo, J.N., Nishitani, R., Yoda, E., Yokoi, T., Tatsumi, T., Domen, K. (2010). A Comparative IR Characterization of Acidic Sites on HY Zeolite by Pyridine and CO2 Probes with Silica-alumina and c-Alumina References. Phy. Chem., 12:11576-1158.
  37. Poh, E., Poh, H., Nur, Muhid, M.N.M., Hamdan, H. (2006). Sulphated AlMCM-41: Mesoporous Solid Brönsted Acid Catalyst for Dibenzoylation of Biphenyl. Catal. Today, 114: 257-262
  38. Rathod, S.B., Gambhire, AB., Arbad, B.R., Lande, M.K. (2010). Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylindne Barbituric Acid Derivatives. Bull. Korean Chem. Soci., 31: 339-343.
  39. Narayan, S., Viaya, J.J., Sivasanker, S., Alam, M., Tamizhdurai, P., Kennedy, L.J. (2015). Characterization and Catalytic Reactivity of Mordenite-investigation of Selective Oxidation of Benzyl Alcohol. Polyhedron, 89: 289-296.