Simultaneous Catalytic Oxidation of a Lean Mixture of CO-CH4 over Spinel Type Cobalt Based Oxides

*Neha Neha  -  Department of Chemical Engineering, Indian Institute of Technology (BHU), India
Ram prasad  -  Department of Chemical Engineering, Indian Institute of Technology (BHU), India
Satya Vir Singh  -  Department of Chemical Engineering, Indian Institute of Technology (BHU), India
Received: 27 Nov 2019; Revised: 11 Jun 2020; Accepted: 12 Jun 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved


Keywords: CO-CH4 mixture oxidation; nickel cobaltite spinel; nickel-cobalt bimetal oxides; ageing

Article Metrics:

  1. Singha, R.K., Ghosh, S., Acharyya, S.S., Yadav, A., Shukla, A., Sasaki, T., Venezia, A.M., Pendem, C., Bal, R. (2016). Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst. Catalysis Science & Technology, 6(12), 4601-4615. DOI: 10.1039/C5CY02088C
  2. Lim, T.H., Cho, S.J., Yang, H.S., Engelhard, M.H., Kim, D.H. (2015). Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion. Applied Catalysis A: General, 505, 62-69. DOI: 10.1016/j.apcata.2015.07.040
  3. Trivedi, S., Prasad, R., Gautam, S.K. (2018). Design of active NiCo2O4‐δ spinel catalyst for abatement of CO‐CH4 emissionsfrom CNG fueled vehicles. AIChE Journal, 64(7), 2632-2646.
  4. Chiew, A.L., Buckley, N.A. (2014). Carbon monoxide poisoning in the 21st century. Critical Care, 18(2), 221-221. DOI: 10.1186/cc13846
  5. Balzan, M.V., Agius, G., Galea Debono, A. (1996). Carbon monoxide poisoning: easy to treat but difficult to recognise. Postgraduate Medical Journal, 72(850), 470-473. DOI: 10.1136/pgmj.72.850.470
  6. Rosenzweig, A.C. (2015). Biochemistry: Breaking methane. Nature, 518(7539), 309-310. DOI: 10.1038/nature14199
  7. Escandón, L.S., Niño, D., Díaz, E., Ordóñez, S., Díez, F.V. (2008). Effect of hydrothermal ageing on the performance of Ce-promoted PdO/ZrO2 for methane combustion. Catalysis Communications, 9(13), 2291-2296. DOI: 10.1016/j.catcom.2008.05.026
  8. Gaur, S., Wu, H., Stanley, G.G., More, K., Kumar, C.S.S.R., Spivey, J.J. (2013). CO oxidation studies over cluster-derived Au/TiO2 and AUROlite™ Au/TiO2 catalysts using DRIFTS. Catalysis Today, 208, 72-81. DOI: 10.1016/j.cattod.2012.10.029
  9. Mandapaka, R.K., Madras, G. (2015). Kinetics of CO oxidation on palladium using microkinetics coupled with reaction route analysis. Chemical Engineering Science, 131, 271-281. DOI: 10.1016/j.ces.2015.03.056
  10. Zhu, X., Du, Y., Wang, H., Wei, Y., Li, K., Sun, L. (2014). Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation. Journal of Rare Earths, 32(9), 824-830. DOI: 10.1016/S1002-0721(14)60148-4
  11. Dubey, A., Reddy, K.P., Gopinath, C.S. (2017). Ambient CO Oxidation on In-Situ Generated Co3O4 Spinel Surfaces with Random Morphology. ChemistrySelect, 2(1), 533-536. DOI: 10.1002/slct.201602010
  12. Cai, T., Yuan, J., Zhang, L., Yang, L., Tong, Q., Ge, M., Xiao, B., Zhao, K., He, D. (2018). Ni–Co–O solid solution dispersed nanocrystalline Co3O4 as a highly active catalyst for low-temperature propane combustion. Catalysis Science & Technology, 8(21), 5416-5427. DOI: 10.1039/C8CY01062E
  13. El-Kemary, M., Nagy, N., El-Mehasseb, I. (2013). Nickel oxide nanoparticles: Synthesis and spectral studies ofinteractions with glucose. Materials Science in Semiconductor Processing, 16(6), 1747-1752. DOI: 10.1016/j.mssp.2013.05.018
  14. Mrowec, S., Grzesik, Z. (2004). Oxidation of nickel and transport properties of nickel oxide. Journal of Physics and Chemistry of Solids, 65 (10), 1651-1657. DOI: 10.1016/j.jpcs.2004.03.011
  15. Li, J., Liang, X., Xu, S., Hao, J. (2009). Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Applied Catalysis B: Environmental, 90(1), 307-312. DOI: 10.1016/j.apcatb.2009.03.027
  16. Kan, W.E., Roslan, J., Isha, R. (2016). Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11(2), 230-237. DOI: 10.9767/bcrec.11.2.554.230-237
  17. Trivedi, S., Prasad, R. (2016). Reactive calcination route for synthesis of active Mn–Co3O4 spinel catalysts for abatement of CO–CH4 emissions from CNG vehicles. Journal of Environmental Chemical Engineering, 4(1), 1017-1028. DOI: 10.1016/j.jece.2016.01.002
  18. Prasad, R., Rattan, G. (2009). Design of a Compact and Versatile Bench Scale Tubular Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 4(1), 5-9. DOI: 10.9767/bcrec.4.1.1250.5-9
  19. Berger, R.J., Pérez-Ramırez, J., Kapteijn, F., Moulijn, J.A. (2002). Catalyst performance testing: Radial and axial dispersion related to dilution in fixed-bed laboratory reactors. Applied Catalysis A: General, 227(1), 321-333. DOI: 10.1016/S0926-860X(01)00950-4
  20. Tabar, A.R., Hamidi, A.A., Ghadamian, H. (2017). Experimental investigation of CNG and gasoline fuels combination on a 1.7 L bi-fuel turbocharged engine. International Journal of Energy and Environmental Engineering, 8(1), 37-45. DOI: 10.1007/s40095-016-0223-3
  21. Matam, S.K., Otal, E.H., Aguirre, M.H., Winkler, A., Ulrich, A., Rentsch, D., Weidenkaff, D., Ferri, D. (2012). Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catalysis Today, 184(1), 237-244. DOI: 10.1016/j.cattod.2011.09.030
  22. Einaga, H., Kiya, A., Yoshioka, S., Teraoka, Y. (2014). Catalytic properties of copper–manganese mixed oxides prepared by coprecipitation using tetramethylammonium hydroxide. Catalysis Science & Technology, 4(10), 3713-3722. DOI: 10.1039/C4CY00660G
  23. Martínez-Arias, A., Fernández-García, M., Ballesteros, V., Salamanca, L.N., Conesa, J.C., Otero, C., Soria, J. (1999). Characterization of High Surface Area Zr−Ce (1:1) Mixed Oxide Prepared by a Microemulsion Method. Langmuir, 15(14), 4796-4802. DOI: 10.1021/la981537h
  24. Basahel, S.N., El-Maksod, I.H.A., Abu-Zied, B.M., Mokhtar, M. (2010). Effect of Zr4+ doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N2O decomposition. Journal of Alloys and Compounds, 493(1), 630-635. DOI: 10.1016/j.jallcom.2009.12.169
  25. Tharayil, N.J., Raveendran, R., Vaidyan, A. V., Chithra, P. (2008). Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles. Indian Journal of Engineering & Materials Sciences, 15(6), 489-496.
  26. Klissurski, D., Uzunova, E., Ivanov, K. (1992). Binary spinel cobaltites of nickel, copper and zinc as precursors of catalysts for carbon oxides methanation. Catalysis Letters, 15(4), 385-391. DOI: 10.1007/BF00769162
  27. Parmaliana, A., Arena, F., Frusteri, F., Giordano, N. (1990). Temperature-programmed reduction study of NiO–MgO interactions in magnesia-supported Ni catalysts and NiO–MgO physical mixture. Journal of the Chemical Society, Faraday Transactions, 86(14), 2663-2669. DOI: 10.1039/FT9908602663
  28. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2), 129-136, DOI: 10.9767/bcrec.6.2.1213.129-136

No citation recorded.