One-pot Selective Conversion of Biomass-derived Furfural into Cyclopentanone/Cyclopentanol over TiO2 Supported Bimetallic Ni-M (M = Co, Fe) Catalysts

Maria Dewi Astuti orcid scopus  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Ditya Kristina  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
*Rodiansono Rodiansono orcid scopus  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Dwi Rasy Mujiyanti  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Received: 13 Nov 2019; Revised: 23 Jan 2020; Accepted: 23 Jan 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

One-pot selective conversion of biomass-derived furfural (FFald) into cyclopentanone (CPO) or cyclopentanol (CPL) using bimetallic nickel-based supported on TiO2 (denoted as Ni-M(3.0)/TiO2; M = Co and Fe; 3.0 is Ni/M molar ratio) have been investigated. Catalysts were synthesized via a hydrothermal method at 150 °C for 24 h, followed by H2 reduction at 450 °C for 1.5 h. X-ray Diffraction (XRD) analysis  showed that the formation of Ni-Co alloy phase at 2θ = 44.2° for Ni-Co(3.0)/TiO2 and Ni-Fe alloy at 2θ = 44.1° for Ni-Fe(3.0)/TiO2. The amount of acid sites was measured by using ammonia-temperature programmed desorption (NH3-TPD). Ni-Co(3.0)/TiO2 has three NH3 desorption peaks at 180 °C, 353 °C, and 569 °C with acid site amounts of 1.30 µmol.g-1, 1.0 µmol.g-1, and 2.0 µmol.g-1,        respectively. On the other hand, Ni-Fe(3.0)/TiO2 consisted of NH3 desorption peaks at 214 °C and 626 °C with acid site amounts of 3.3 µmol.g-1and 2.0 µmol.g-1, respectively. Both Ni-Co(3.0)/TiO2 and Ni-Fe(3.0)/TiO2 catalysts were found to be active for the selective hydrogenation of FFald to furfuryl alcohol (FFalc) at low temperature of 110 °C, H2 3.0 MPa, 3 h with FFalc selectivity of 81.1% and 82.9%, respectively. High yields of CPO (27.2%) and CPL (41.0%) were achieved upon Ni-Fe(3.0)/TiO2 when the reaction temperature was increased to 170 °C, 3.0 MPa of H2, and a reaction time of 6 h. The yield of CPO+CPL on the reused catalyst decreased slightly after the second reaction run, but the activity was maintained for at least three consecutive runs. Copyright © 2020 BCREC Group. All rights reserved

Keywords: Bimetallic Ni-M (M=Co and Fe); Furfural; Furfuryl alcohol; Cyclopentanone; Cyclopentanol

Article Metrics:

  1. Lange, J.P., Van Der Heide, E., Van Buijtenen, J., Price, R. (2012). Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem, 5, 150–166. https://doi.org/10. 1002/cssc.201100648
  2. Dutta, S., De, S., Saha, B., Alam, M.I. (2012). Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science and Technology, 2, 2025–2036. https://doi.org/10.1039/c2cy20235b
  3. Metkar, P.S., Till, E.J., Corbin, D.R., Pereira, C.J., Hutchenson, K.W., Sengupta, S.K. (2015). Reactive distillation process for the production of furfural using solid acid catalysts. Green Chemistry, 17, 1453–1466. https://doi.org/10.1039/c4gc01912a
  4. Sun, D., Sato, S., Ueda, W., Primo, A., Garcia, H., Corma, A. (2016). Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 18, 2579–2597. https://doi. org/10.1039/c6gc00377j.
  5. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 19, 2876–2924. https://doi.org/10.1039/ c7gc00620a.
  6. Alonso, D.M., Wettstein, S.G., Dumesic, J.A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41, 8075–8098. https:// doi.org/10.1039/c2cs35188a
  7. Hronec, M., Fulajtarová, K. (2012). Selective transformation of furfural to cyclopentanone. Catalysis Communications, 24, 100–104. https://doi.org/10.1016/j.catcom.2012.03.020
  8. Hronec, M., Fulajtárova, K., Soták, T. (2014). Highly selective rearrangement of furfuryl alcohol to cyclopentanone. Applied Catalysis B: Environmental, 154–155, 294–300. https://doi.org/10.1016/j.apcatb.2014.02.029
  9. Hronec, M., Fulajtárová, K., Vávra, I., Soták, T., Dobročka, E., Mičušík, M. (2016). Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Applied Catalysis B: Environmental, 181, 210–219. https://doi.org/10.1016/j.apcatb. 2015.07.046
  10. Shen, T., Hu, R., Zhu, C., Li, M., Zhuang, W., Tang, C., Ying, H. (2018). Production of cyclopentanone from furfural over Ru/C with Al 11.6 PO 23.7 and application in the synthesis of diesel range alkanes. RSC Advances, 8, 37993–38001. https://doi.org/10.1039/ c8ra08757a
  11. Zhang, G.S., Zhu, M.M., Zhang, Q., Liu, Y. M., He, H.Y., Cao, Y. (2016). Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chemistry, 18, 2155–2164. https://doi.org/10.1039/c5gc02528a
  12. Li, Y., Guo, X., Liu, D., Mu, X., Chen, X., Shi, Y. (2018). Selective conversion of furfural to cyclopentanone or cyclopentanol using Co-Ni catalyst in water. Catalysts, 8, 193-endpage?. https://doi.org/10.3390/catal8050193
  13. Akashi, T., Sato, S., Takahashi, R., Sodesawa, T., Inui, K. (2003). Catalytic vapor-phase cyclization of 1,6-hexanediol into cyclopentanone. Catalysis Communications, 4, 411–416. https://doi.org/10.1016/S1566-7367(03)00095-5
  14. Sudarsanam, P., Katta, L., Thrimurthulu, G., Reddy, B.M. (2013). Vapor phase synthesis of cyclopentanone over nanostructured ceria-zirconia solid solution catalysts. Journal of Industrial and Engineering Chemistry, 19, 1517–1524. https://doi.org/10.1016/ j.jiec.2013.01.018
  15. Liu, X., Zhang, B., Fei, B., Chen, X., Zhang, J., Mu, X. (2017). Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon. Faraday Discussions, 202, 79–98. https://doi.org/10.1039/c7fd00041c
  16. Date, N.S., Kondawar, S.E., Chikate, R.C., Rode, C.V. (2018). Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts. ACS Omega, 3, 9860–9871. https://doi.org/10.1021/ acsomega.8b00980
  17. De, S., Zhang, J., Luque, R., Yan, N. (2016). Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 9(11), 3314–3347. https://doi.org/10.1039/c6ee02002j
  18. Jia, P., Lan, X., Li, X., Wang, T. (2019). Highly Selective Hydrogenation of Furfural to Cyclopentanone over a NiFe Bimetallic Catalyst in a Methanol/Water Solution with a Solvent Effect. ACS Sustainable Chemistry and Engineering, 7(18), 15221–15229. https://doi.org/ 10.1021/acssuschemeng.9b02112
  19. Yang, Y., Du, Z., Huang, Y., Lu, F., Wang, F., Gao, J., Xu, J. (2013). Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chemistry, 15, 1932–1940. https://doi.org/10.1039/c3gc37133f
  20. Rodiansono, R., Astuti, M.D., Husain, S., Nugroho, A., Sutomo, S. (2019). Selective conversion of 2-methylfuran to 1,4-pentanediol catalyzed by bimetallic Ni-Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 529–541. https://doi.org/10.9767/ bcrec.14.3.4347.529-541
  21. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21, 2307–2315. https://doi.org/10.1039/ c8gc03938k
  22. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science and Technology, 2, 2139–2145. https://doi.org/10.1039/c2cy20216f
  23. Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016). Selective hydrogenation of biomass-derived furfural over supported Ni3Sn2 alloy: Role of supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 1–9. https://doi.org/10.9767/bcrec. 11.1.393.1-9
  24. Lowel, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density. Dordrecht, The Netherlands: Kluwer Academic Publisher.
  25. JCPDS-ICDD. (1991). Powder Difraction Files.
  26. Li, L.Q., Liao, H.W., Wang, H.R. (1999). Preparation of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction. Journal of Materials Chemistry, 9, 2675–2677. https://doi.org/10.1039/a904686k
  27. Kovtunov, K.V., Barskiy, D.A., Salnikov, O.G., Burueva, D.B., Khudorozhkov, A.K., Bukhtiyarov, A.V., Prosvirin, I.P., Gerasimov, E.Y., Bukhtiyarov, V.I., Koptyug, I.V. (2015). Strong Metal-Support Interactions for Palladium Supported on TiO2 Catalysts in the Heterogeneous Hydrogenation with Parahydrogen. ChemCatChem, 17(7), 2581–2584. https://doi.org/10.1002/cctc.201500618
  28. Rodiansono, R., Astuti, M.D., Santoso, U.T., Shimazu, S. (2015). Hydrogenation of Biomass-derived Furfural Over Highly Dispersed-Aluminium Hydroxide Supported Ni-Sn(3.0) Alloy Catalysts. Procedia Chemistry, 16, 531–539. https://doi.org/10.1016/ j.proche.2015.12.089
  29. Kijeński, J., Winiarek, P., Paryjczak, T., Lewicki, A., Mikolajska, A. (2002). Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol. Applied Catalysis A: General, 233, 171–182. https://doi.org/10.1016/S0926-860X(02)00140-0
  30. Ma, Y.F., Wang, H., Xu, G.Y., Liu, X.H., Zhang, Y., Fu, Y. (2017). Selective conversion of furfural to cyclopentanol over cobalt catalysts in one step. Chinese Chemical Letters, 28, 1153–1158. https://doi.org/10.1016/j.cclet. 2017.03.017
  31. Dong, Q., Huang, Y., Yang, H., Pei, J., Li, K., Yuan, M., Xiao, W., Ni, W., Hou, Z. (2017). The Catalytic Hydrogenation of Biomass Platform Molecules by Ni–Co Nanoalloy Catalysts. Topics in Catalysis, 60, 666–676. https://doi.org/10.1007/s11244-017-0774-4
  32. Bhogeswararao, S., Srinivas, D. (2015). Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. Journal of Catalysis, 327, 65–77. https://doi.org/10.1016/j.jcat.2015.04.018
  33. Wijaya, H.W., Sato, T., Tange, H., Hara, T., Ichikuni, N., Shimazu, S. (2017). Hydrogenolysis of furfural into 1,5-pentanediol by employing Ni-M (M = Y or La) composite catalysts. Chemistry Letters, 46(5), 744–746. https://doi.org/10.1246/cl.170129
  34. Ren, D., Song, Z., Li, L., Liu, Y., Jin, F., Huo, Z. (2016). Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chemistry, 18(10): 3075–3081. https://doi.org/10.1039/ c5gc02493e
  35. Liu, S., Amada, Y., Tamura, M., Nakagawa, Y., Tomishige, K. (2014). Performance and characterization of rhenium-modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catalysis Science and Technology, 4(8), 2535–2549. https://doi.org/10.1039/c4cy00161c

No citation recorded.