Polymerization of Ethylene Glycol Dimethacrylate (EGDM), Using An Algerian Clay as Eco-catalyst (Maghnite-H+ and Maghnite-Na+)

Sara Haoue  -  Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, Université Oran1 Ahmed Ben Bella, Algeria
*Hodhaifa Derdar  -  Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, Université Oran1 Ahmed Ben Bella, Algeria
Mohammed Belbachir  -  Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, Université Oran1 Ahmed Ben Bella, Algeria
Amine Harrane  -  3Dept. of Chemistry, FSEI, University Abdelhamid Ibn Badis Mostaganem, Algeria
Received: 10 Nov 2019; Revised: 14 Jan 2020; Accepted: 15 Jan 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this paper we have explored a novel and green method to synthesis and polymerize ethylene glycol dimethacrylate (EGDM). This technique consists on using Maghnite (Algerian clay) as a green catalyst to replace toxic catalysts. The Algerian clay has been modified using two ion exchange process to obtain Maghnite-H+ (proton exchanged process) and Maghnite-Na+ (sodium exchanged process). Synthesis experiments of EGDM and Poly (EGDM) are performed in bulk respecting the principles of green chemistry. The structure of the obtained monomer and the obtained polymer was confirmed by FT-IR, 1H-NMR and 13C-NMR, where the methacrylate end groups are clearly visible. The presence of unsaturated end group in the structure of monomer was confirmed by UV-Visible analysis. Thermogravimetric analysis (TGA) was used to study the thermal stability of these obtained products. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords
Ethylene glycol dimethacrylate; Green catalyst; Maghnite-H+; Maghnite-Na+; Anionic polymerization.

Article Metrics:

  1. Szwarc, M. (1956). Living’ Polymers. Nature, 178, 1168−1169.
  2. Hsieh, H.L., Quirk, R.P. (1996). Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York.
  3. Wang, W., Lu, X., Bobade, S., Chen, J., Kang, N.-G., Zhang, Q., Mays, J. (2014). Synthesis and Characterization of Comb and Centipede Multigraft Copolymers PnBA-g-PS with High Molecular Weight Using Miniemulsion Polymerization. Macromolecules, 47, 7284−7295.
  4. Hirao, A., Shione, H., Ishizone, T., Nakahama, S. (1997). Anionic Polymerizations of 4-Vinylphenyl Methyl Sulfide, 4-Vinylbenzyl Methyl Sulfide, and 2-(4′-Vinylphenyl)ethyl Methyl Sulfide. Macromolecules, 30, 3728−3731.
  5. Ishizone, T., Kato, R., Ishino, Y., Hirao, A., Nakahama, S. (1991). Anionic Living Polymerizations of 2-(3-Vinylphenyl)-1,3-dioxolane and Related Monomers. Macromolecules, 24, 1449−1454.
  6. Ishizone, T., Sugiyama, K., Hirao, A., Nakahama, S. (1993). Anionic Polymerizations of 2-, 3-, and 4-Cyanostyrene. Macromolecules, 26, 3009−3018.
  7. Hirao, A., Nakahama, S. (1998). Anionic Living Polymerization of Functionalized Monomers. Acta Polym., 49, 133−144.
  8. Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R., Pascault, J.P. (2010). Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci., 35, 578−622.
  9. Lavilla, C., Martínez de Ilarduya, A., Alla, A., García-Martín, M.G., Galbis, G.A., Muñ oz-Guerra, S. (2012). Bio-Based Aromatic Polyesters from a Novel Bicyclic Diol Derived from D‑Mannitol. Macromolecules, 45, 8257−8266.
  10. Kricheldorf, H. (2013). Experiments before World war I. Polycondensation, 7-25.
  11. Emoto, K., Nagasaki, Y., Kataoka, K. (1999). Coating of Surfaces with Stabilized Reactive Micelles from Poly(ethylene glycol)−Poly(DL-lactic acid) Block Copolymer. Langmuir, 15, 5212-5218.
  12. Kim, J.H., Emoto, K., Lijima, M., Nagasaki, Y., Aoyagi, T., Okano, T., Sakurai, Y., Kataoka, K. (1991). Core‐stabilized polymeric micelle as potential drug carrier: increased solubilization of taxol. Polym. Adv. Technol., 10, 647-654.
  13. Kim, B.S., Hrkach, J.S., Langer, R. (2000). Biodegradable photo-crosslinked poly (ether-ester) networks for lubricious coatings. Biomaterials, 21, 259-265.
  14. Hern, D.L., Hubbell, J.A. (1998). Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res., 39, 266-276.
  15. Lu, S., Anseth, K.S. (2000). Release Behavior of High Molecular Weight Solutes from Poly(ethylene glycol)-Based Degradable Networks. Macromolecules, 33, 2509-251.
  16. Scott, R.A., Peppas, N.A. (1999). Compositional effects on network structure of highly cross-linked copolymers of PEG-containing multiacrylates with acrylic acid. Macromolecules, 32, 6139-6148.
  17. Scott, R.A., Peppas, N.A. (1999). Kinetics of copolymerization of PEG-containing multiacrylates with acrylic acid. Macromolecules, 32, 6149-6158.
  18. Mann, B.K., Gobin, A.S., Tsai., A.T., Schmedlen., R.H., West, J.L. (2001). Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials, 22, 3045-3051.
  19. Benoit, DS., Anseth, KS. (2005). Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomaterialia, 1, 461-470.
  20. Belbachir, M. (2001). U.S. Patent. 066969. 0101.
  21. Bentahar, M., Meghabar, R., Guemra, K., Belbachir, M. (2017). A Green Catalyst for Synthesis of Bis-Macromonomers of Poly (Styrene Oxide). Rev. Roum. Chim., 62, 839-848.
  22. Hirao, A., Goseki, R., Ishizone, T. (2014). Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures. Macromolecules, 47, 1883-1905.
  23. Hensen, K., Mahaim, C., HiSlderich, W.F. (1997). Alkoxylation of limonene and alpha pinene over beta zeolite as heterogeneous catalyst. Applied Catalysis A: General, 149, 311-329
  24. Zatta, L., Ramos, L.P., Wypych, F. (2013). Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol. Appl. Clay Sci., 80-81, 236-244.
  25. Reddy, C.R., Lyengar, P., Nagendrappa, G., Jai-Prakash, B.S. (2005). Esterification of dicarboxylic acids to diesters over Mn-montmorillonite clay catalysts. Catal. Lett., 101, 87-91.
  26. Bouguerra, N.S., Trabelsi, M., Frikha, M.H. (2009). Esterification of fatty acids with short-chain alcohols over commercial acid clays in a semi-continuous reactor. Energ., 2, 1107-1117.
  27. Kaur, M., Sharma, S., Bedi, P.M.S. (2015). Sil-ica supported Brönsted acids as catalyst in organic transformations: A comprehensive re-view. Chin. J. Catal., 36, 520-549.
  28. Adriano, L.S.N., Tito, L.M.Z., Angélicab, R.S., Costa, C.E.F., Zamiana, J.R., Filhoa, G.N.R. (2011). Esterification of oleic acid over solid acid catalysts prepared from Amazon flint kaolin. Appl. Catal. B Environ., 101, 495-503.
  29. Miranda, R., Valencia, V.O., Abel Maya, V.C., Nicolás, V.I., Vargas, R.Y.M., Morales, S.J.A., García, R.E., Salmón, M. (2013). Synthesis of cycloveratrylene macrocycles and benzyloligomers catalysed by bentonite under microwave/infrared and solvent-free conditions. Molecules, 18, 12820-12844.
  30. Fási, A., Pálinkó, I., Gömöryc, Á., Kiricsi, I. (2004). Ring opening, dimerisation and oligomerisation reactions of methyloxirane on solid acid and base catalysts. J. Molec. Catal. A Chem., 208, 307-311.
  31. Wiedemann, S.C.C., Stewart, J.A., Soulimani, F., Bergen-Brenkman, T., Langelaar, S., Wels, B., Peinder, P., Bruijnincx, P.C.A., Weckhuysen, B.M. (2014). Skeletal isomerisation of oleic acid over ferrierite in the presence and absence of triphenylphosphine: Pore mouth catalysis and related deactivation mechanisms. J. Catal., 316, 24-35.
  32. Perissinotto, M., Lenarda, M., Storaro, L., Ganzerla, R. (1997). Solid acid catalysts from clays: acid leached metakaolin as isopropanol dehydration and 1-butene isomerisation catalyst. J. Molec. Catal. A Chem., 121, 103-109.
  33. Lei, L., Plank, J. (2014). Synthesis and properties of a vinyl ether-based polycarboxylate superplasticizer for concrete possessing clay tolerance. Ind. Eng. Chem. Res., 53, 1048-1055.
  34. Sani, Y.M., Daud, W.M.A.W., Abdul Aziz, A.R. (2014). Activity of solid acid catalysts for biodiesel production: A critical review. Appl. Catal. A Gen., 470, 140-161.
  35. Ayat, M., Belbachir, M., Rahmouni, A. (2016). Selective synthesis, characterization, and kinetics studies of poly(a-Methyl styrene) induced by maghnite-Na+ clay (Algerian MMT). Bull. Chem. React. Eng. Catal., 11, 376-388.
  36. Bensaada, N., Ayat, M., Meghabar, R., Belbachir, M. (2015). The synthesis of polystyrene with a new chemical approach. Current Chemistry Letters, 4, 55–60.
  37. Rahmouni, A., Belbachir, M., Ayat, M. (2018). Structural inverstigation: anionic polymerisation of acrylamide under micowave irradiation using maghnite-Naþ clay (Algerian MMT) as initiator. Bull. Chem. React. Eng. Catal., 13, 262-274.
  38. Derdar, H., Belbachir, M., Harrane, A. (2019). A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged montmorillonite clay, as Eco-catalyst. Bull. Chem. React. Eng. Catal., 14, 69-78.
  39. Derdar, H., Belbachir, M., Hennaoui, F., MAkeb, M., Harrane, A. (2018). Green Copolymerization of Limonene with β-Pinene Catalyzed by an Eco-Catalyst Maghnite-H+. Polym. Sci. B, 60, 555-562.
  40. Derkaoui, S., Belbachir, M., Haoue, S., Zeggai, F.Z., Rahmouni, A., Ayat, M. (2019). Homopolymerization of methacrylamide by anionic process under effect of Maghnite-Na+ (Algerian MMT). J. Organomet. Chem., 893, 52-60.
  41. Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Maghabar, R. (2018). Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem., 48, 188–198.
  42. Chu, C.H., Ho, N.M., Tong, T.T.C. (2015), Synthesis of Coagent Ethylene Glycol Dimethacrylate. Malays. J. Chem., 17, 26-31.
  43. Yahiaoui, A., Belbachir, M. (2006). Ring‐opening polymerization of styrene oxide with Maghnite‐H+ as ecocatalyst. J. Appl. Polym. Sci., 100, 1681-1687.