Design, Characterization and Application of The SCMNPs@PC/VB1-Zn as A Green and Recyclable Biocatalyst for Synthesis of Pyrano[2,3-c]pyrazole and 4H-benzo-[b]-pyran Derivatives

Fang Hou  -  Jiyuan Vocational and Technical College, China
Wei Zheng  -  Jiyuan Vocational and Technical College, China
*Nasser Yousefi  -  Islamic Azad University, Iran, Islamic Republic of
Received: 26 Oct 2019; Revised: 3 Jan 2020; Accepted: 3 Jan 2020; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 67 63


Eco-friendly and reusable solid acid catalysts (SCMNPs@PC/VB1-Zn) were identified as one of the most effective basic catalysts for the composition of a pot, three-component pyrano[2,3-c]pyrazoles. Methyl-1-phenyl-1H-pyrazole-5(4H)-one, benzaldehyde and malononitrile in high yield at 80 °C. SCMNPs@ PC/VB1-Zn reports the simple and efficient catalysis of a three-component pot reaction of dimedone, aldehydes, and malononitrile to 4H-benzo-[b]-pyran derivatives. This magnetic nanocatalyst can be recycled more than 6 times without dramatically reducing performance with respect to reaction time and efficiency. Copyright © 2020 BCREC Group. All rights reserved

Recyclable biocatalyst; Magnetic nanocatalyst; Synthesis; Pyran derivatives; Eco-friendly

Article Metrics:

  1. Utkan, G.G., Sayar, F., Batat, P., Ide, S., Kriechbaum, M., Pişkin, E. (2011). Synthesis and characterization of nanomagnetite particles and their polymer coated forms. Journal of colloid and interface science, 353(2), 372-379.
  2. Park, J., An, K., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature materials, 3(12), 891-895.
  3. Mizutani, N., Iwasaki, T., Watano, S., Yanagida, T., Tanaka, H., Kawai, T. (2008). Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bulletin of Materials Science, 31(5), 713-717.
  4. Morel, A.L., Nikitenko, S.I., Gionnet, K., Wattiaux, A., Lai-Kee-Him, J., Labrugere, C., Chevalier, B., Deleris, G., Petibois, C., Brisson, A., Simonoff,
  5. M. (2008). Sonochemical approach to the synthesis of Fe3O4@SiO2 core− shell nanoparticles with tunable properties. ACS Nano, 2(5), 847-856.
  6. Panella, B., Vargas, A., Baiker, A. (2009). Magnetically separable Pt catalyst for asymmetric hydrogenation. Journal of Catalysis, 261(1), 88-93.
  7. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., Deng, X. (2012). Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Engineering, 27, 632-637.
  8. Shiri, L., Ghorbani-Choghamarani, A., Kazemi, M. (2016). Sulfides synthesis: nanocatalysts in C–S cross-coupling reactions. Australian Journal of Chemistry, 69(6), 585-600.
  9. Kim, Y.S., Kim, Y.H. (2003). Application of ferro-cobalt magnetic fluid for oil sealing. Journal of Magnetism and Magnetic Materials, 267(1), 105-110.
  10. Ghorbani-Choghamarani, A., Norouzi, M. (2014). Synthesis of copper (II)-supported magnetic nanoparticle and study of its catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Journal of Molecular Catalysis A: Chemical, 395, 172-179.
  11. Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E., White, J.M. (1992). Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. The Journal of Physical Chemistry, 96(9), 3812-3817.
  12. Yao, G.H., Wang, F., Wang, X.B., Gui, K.T. (2010). Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed. Energy, 35(5), 2295-2300.
  13. Ishii, M., Nakahira, M., Yamanaka, T. (1972). Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Communications, 11(1), 209-212.
  14. Tartaj, P., Morales, M.P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., Serna, C.J. (2011). The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and Photoelectrochemical Water Splitting. Advanced Materials, 23, 5243-5249.
  15. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110.
  16. Sharma, P., Rana, S., Barick, K.C., Kumar, C., Salunke, H.G., Hassan, P.A. (2014). Biocompatible phosphate anchored Fe3O4 nanocarriers for drug delivery and hyperthermia. New Journal of Chemistry, 38(11), 5500-5508.
  17. Huh, Y.M., Jun, Y.W., Song, H.T., Kim, S., Choi, J.S., Lee, J.H., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., Cheon, J. (2005). In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. Journal of the American Chemical Society, 127(35), 12387-12391.
  18. Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R. (1999). Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic materials, 201(1-3), 413-419.
  19. Aghbash, K.O., Pesyan, N.N., Batmani, H. (2019). Fe3O4@silica‐MCM‐41@DABCO: A novel magnetically reusable nanostructured catalyst for clean in situ synthesis of substituted 2‐aminodihydropyrano [3,2‐b] pyran‐3‐cyano. Applied Organometallic Chemistry. 33 (11) e5227.
  20. Yahyazadeh, A., Abbaspour-Gilandeh, E., Aghaei-Hashjin, M. (2018). Four-Component Synthesis of 2-Amino-3-Cyanopyridine Derivatives Catalyzed by Cu@ imineZCMNPs as a Novel, Efficient and Simple Nanocatalyst Under Solvent-Free Conditions. Catalysis Letters, 148(4), 1254-1262.
  21. Abbaspour-Gilandeh, E., Yahyazadeh, A., Aghaei-Hashjin, M. (2018). One-pot synthesis of 3,4-dihydropyrimidin-2 (1H)-ones catalyzed by SO3H@ imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions. RSC advances, 8(70), 40243-40251.
  22. Torabi, M., Yarie, M., Zolfigol, M.A. (2019). Synthesis of a novel and reusable biological urea based acidic nanomagnetic catalyst: Application for the synthesis of 2‐amino‐3‐cyano pyridines via cooperative vinylogous anomeric based oxidation. Applied Organometallic Chemistry, 33(6), e4933.
  23. Foloppe, N., Fisher, L.M., Howes, R., Potter, A., Robertson, A.G., Surgenor, A.E. (2006). Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorganic & medicinal chemistry, 14(14), 4792-4802.
  24. Smith, P.W., Sollis, S.L., Howes, P.D., Cherry, P.C., Starkey, I.D., Cobley, K.N., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P. (1998). Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure− activity relationships of 4-guanidino-and 4-amino-4 H-pyran-6-carboxamides. Journal of Medicinal Chemistry, 41(6), 787-797.
  25. Zaki, M.E., Soliman, H.A., Hiekal, O.A., Rashad, A.E. (2006). Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Zeitschrift für Naturforschung C, 61(1-2), 1-5.
  26. Zaki, Μ.E., Morsy, E.M., Abdel-Motti, F.M., & Abdel-Megeid, F.Μ.E. (2004). The behaviour of ethyl 1-acetyl-4-aryl-5-cyano-3-methyI-1, 4-dihydropyrano [2,3-c] pyrazol-6-ylimidoformate towards nucleophiles. Heterocyclic Communications, 10(1), 97-102.
  27. Ren, Z., Cao, W., Tong, W., Jin, Z. (2005). Solvent‐free, one‐pot synthesis of pyrano [2,3‐c] pyrazole derivatives in the presence of KF.2H2O by grinding. Synthetic Communications, 35(19), 2509-2513.
  28. Abdollahi-Alibeik, M., Moaddeli, A., Masoomi, K. (2015). BF3 bonded nano Fe3O4 (BF3/MNPs): an efficient magnetically recyclable catalyst for the synthesis of 1, 4-dihydropyrano [2,3-c] pyrazole derivatives. RSC Advances, 5(91), 74932-74939.
  29. Jin, T.S., Zhao, R.Q., Li, T.S. (2006). An one-pot three-component process for the synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4- dihydropyrano[2,3-c]pyrazoles in aqueous media. Arkivoc, xi, 176-182.
  30. Heravi, M.M., Ghods, A., Derikvand, F., Bakhtiari, K., Bamoharram, F.F. (2010). H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano [2, 3-c] pyrazole and pyrano [2, 3-d] pyrimidine derivatives. Journal of the Iranian Chemical Society, 7(3), 615-620.
  31. Shi, D., Mou, J., Zhuang, Q., Niu, L., Wu, N., Wang, X. (2004). Three‐component one‐pot synthesis of 1,4‐dihydropyrano [2,3‐c] pyrazole derivatives in aqueous media. Synthetic communications, 34(24), 4557-4563.
  32. Sheibani, H., Babaie, M. (2009). Three-component reaction to form 1,4-dihydropyrano [2,3-c] pyrazol-5-yl cyanides. Synthetic Communications, 40(2), 257-265.
  33. Jin, T.S., Wang, A.Q., Cheng, Z.L., Zhang, J.S., Li, T.S. (2005). A clean and simple synthesis of 6 -amino-4-aryl-5-cyano-3‐methyl-1-phenyl-1, 4‐dihydropyrano [2, 3‐c] pyrazole in water. Synthetic communications, 35(1), 137-143.
  34. Rostami, A., Atashkar, B., Gholami, H. (2013). Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catalysis Communications, 37, 69-74.
  35. Mogilaiah, K., Chandra, A.V., Srivani, N., Kumar, K.S. (2013). Convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans using LiCl/Al2O3 under microwave irradiation. Indian Journal of Chemistry-Section B, 52B(02), 306-308.
  36. Ranu, B.C., Banerjee, S., Roy, S. (2008). A task specific basic ionic liquid,[bmIm] OH-promoted efficient, green and one-pot synthesis of tetrahydrobenzo [b] pyran derivatives. Indian Journal of Chemistry, 47 (1108-1112).
  37. Liqin, Z., Yiqun, L., Lu, C., & Bo, Z. (2010). One-pot synthesis of tetrahydrobenzo [b] pyran catalyzed by basic quaternary ammonium salt in aqueous medium. Chinese Journal of Organic Chemistry, 30(1), 124-127.
  38. Khaksar, S., Rouhollahpour, A., Talesh, S.M. (2012). A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo [b] pyrans using 2,2,2-trifluoroethanol as a metal-free and reusable medium. Journal of Fluorine Chemistry, 141, 11-15.
  39. Zeng, Z.G., Wang, L.Y., Cao, Y., Luo, Y.P. (2012). Synthesis of 2-amide-3-carboxylate-4-aryl-4H-chromene derivatives. Research on Chemical Intermediates, 38(8), 1751-1760.
  40. Li, J.T., Xu, W.Z., Yang, L.C., Li, T.S. (2004). One‐Pot Synthesis of 2-Amino-4-aryl-3-carbalkoxy-7, 7-dimethyl‐5,6,7, 8-tetrahydrobenzo [b] pyran Derivatives Catalyzed by KF/Basic Al2O3 Under Ultrasound Irradiation. Synthetic communications, 34(24), 4565-4571.
  41. Hasaninejad, A., Jafarpour, N., Mohammadnejad, M. (2012). Synthesis of benzo [b] pyrane derivatives using supported potassium fluoride as an efficient and reusable catalytic system. Journal of Chemistry, 9(4), 2000-2005.
  42. Wang, L.M., Shao, J.H., Tian, H., Wang, Y.H., Liu, B. (2006). Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. Journal of fluorine chemistry, 127(1), 97-100.
  43. Khodaei, M.M., Bahrami, K., Farrokhi, A. (2010). Amberlite IRA-400 (OH−) as a Catalyst in the Preparation of 4 H-Benzo [b] pyrans in Aqueous Media. Synthetic Communications, 40(10), 1492-1499.
  44. Ponpandian, T., Muthusubramanian, S. (2014). One-pot, catalyst-free synthesis of spirooxindole and 4 h-pyran derivatives. Synthetic Communications, 44(6), 868-874.
  45. Tahmassebi, D., Bryson, J.A., Binz, S.I. (2011). 1,4-Diazabicyclo [2.2.2] octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo [b] pyran derivatives via multicomponent reaction in aqueous media. Synthetic Communications, 41(18), 2701-2711.
  46. Brahmachari, G., Banerjee, B. (2013). Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustainable Chemistry & Engineering, 2(3), 411-422.
  47. Elnagdi, N.M.H., Al-Hokbany, N.S. (2012). Organocatalysis in synthesis: L-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules, 17(4), 4300-4312.
  48. Jin, T.S., Wang, A.Q., Shi, F., Han, L.S., Liu, L.B., Li, T.S. (2006). Hexadecyldimethyl benzyl ammonium bromide: an efficient catalystfor a clean one-pot synthesis of tetrahydrobenzopyran derivatives in water. Arkivoc, 14, 78-86.
  49. Pore, D.M., Undale, K.A., Dongare, B.B., Desai, U.V. (2009). Potassium phosphate catalyzed a rapid three-component synthesis of tetrahydrobenzo [b] pyran at ambient temperature. Catalysis letters, 132(1-2), 104-108.
  50. Gao, S., Tsai, C.H., Tseng, C., Yao, C.F. (2008). Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 64(38), 9143-9149.
  51. Bhosale, R.S., Magar, C.V., Solanke, K.S., Mane, S.B., Choudhary, S.S., Pawar, R.P. (2007). Molecular iodine: An efficient catalyst for the synthesis of tetrahydrobenzo [b] pyrans. Synthetic Communications, 37(24), 4353-4357.
  52. Maleki, B., Ashrafi, S.S. (2014). Nano a-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo [b] pyran and pyrano [2, 3-c] pyrazole derivatives. RSC Advances, 4(81), 42873-42891.
  53. Shinde, S.V., Jadhav, W.N., Kondre, J.M., Gampawar, S.V., Karade, N.N. (2008). Sulfamic acid catalysed one-pot three-component condensation for the synthesis of 1, 4-dihydropyrano [2, 3-c] pyrazoles. Journal of Chemical Research, 2008(5), 278-279.
  54. Farahi, M., Karami, B., Sedighimehr, I., & Tanuraghaj, H. M. (2014). An environmentally friendly synthesis of 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives catalyzed by tungstate sulfuric acid. Chinese Chemical Letters, 25(12), 1580-1582.
  55. Mobinikhaledi, A., Fard, M.A.B. (2010). Tetrabutylammonium bromide in water as a green media for the synthesis of pyrano [2, 3-d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives. Acta Chimica Slovenica, 57(4), 931-935.
  56. Wang, L.M., Shao, J.H., Tian, H., Wang, Y.H., Liu, B. (2006). Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. Journal of fluorine chemistry, 127(1), 97-100.
  57. Tu, S., Wang, H., Feng, J., Tang, A., & Feng, J. (2001). A Convenient Synthesis of 2-Amino-5,6,7,8-Tetrahydro-5-Oxo-4-Aryl-7,7-Dimethyl-4H-Benzo-[B]-Pyran-3-Ethyl-carboxylates under Microwave Irradiation. Synthetic Communications, 31(17), 2663-2666.
  58. Hekmatshoar, R., Majedi, S., Bakhtiari, K. (2008). Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo [b] pyran derivatives. Catalysis Communications, 9(2), 307-310.
  59. Joshi, V.M., Magar, R.L., Throat, P.B., Tekale, S.U., Patil, B.R., Kale, M.P., Pawar, R.P. (2014). Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst. Chinese Chemical Letters, 25(3), 455-458.
  60. Nemouchi, S., Boulcina, R., Carboni, B., Debache, A. (2012). Phenylboronic acid as an efficient and convenient catalyst for a three-component synthesis of tetrahydrobenzo[b] pyrans. Comptes Rendus Chimie, 15(5), 394-397.
  61. Balalaie, S., Bararjanian, M., Sheikh-Ahmadi, M., Hekmat, S., Salehi, P. (2007). Diammonium hydrogen phosphate: An efficient and versatile catalyst for the one‐pot synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media. Synthetic Communications, 37(7), 1097-1108.