skip to main content

Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

1Institute for Advanced Engineering (IAE), 633-2 Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi, 449-863, South Korea

2Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, South Korea

Received: 12 Jul 2016; Revised: 31 May 2017; Accepted: 1 Jun 2017; Published: 1 Dec 2017; Available online: 27 Oct 2017.
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Fischer-Tropsch synthesis (FTS) reaction from syngas was investigated on the Pt-promoted cobalt-based hybrid catalysts prepared by co-precipitation method in a slurry of ZSM-5 (Si/Al=25). The hybrid catalysts were compared with each other for the different content of Pt as a promoter and are characterized using BET, XRD, H2-TPR and NH3-TPD. Their physicochemical properties were correlated with the activity and selectivity of the catalysts. As results, all hybrid catalysts show the C5-C9 yield (%) higher than that of Co-Al2O3/ZSM-5 catalyst. The Pt-promoted hybrid catalysts were found to be more promising towards production of the hydrocarbons of gasoline range and over C10

Fulltext View|Download
Keywords: Syngas; Fischer-Tropsch synthesis; Hybrid catalyst; ZSM-5

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Keshav, T.R., Basu, S. (2007). Gas-to-Liquid Technologies: India's Perspective. Fuel Process. Technol., 88: 493-500
  2. Dry, M.E. (2002). The Fischer-Tropsch Process: 1950-2000. Catal. Today, 71: 227-241
  3. Steynberg, A.P., Espinoza, R.L., Jager, B., Vosloo, A.C. (1999). High Temperature Fischer-Tropsch Synthesis in Commercial Practice. Appl. Catal. A, 186: 41-54
  4. Martı´nez, A., Rolla´n, J., Arribas, M.A., Cerqueira, H.S., Costa, A.F., Aguiar, E.F.S. (2007). A Detailed Study of the Activity and Deactivation of Zeolites in Hybrid Co/SiO2-Zeolite Fischer-Tropsch Catalysts. J. Catal., 249: 162-173
  5. Martı´nez, A., Rolla´n, J., Arribas, M.A., Cerqueira, H.S., Costa, A.F., Aguiar, E.F.S. (2008). Catalytic Behavior of Hybrid Co/SiO2-(Medium-Pore) Zeolite Catalysts during the One-Stage Conversion of Syngas to Gasoline. Appl. Catal. A, 346: 117-125
  6. Li, Y.P., Wang, T.J., Wu, C.Z., Lv, Y., Tsubaki, N. (2008). Gasoline-Range Hydrocarbon Synthesis over Co/SiO2/HZSM-5 Catalyst with CO2-Containing Syngas. Energy Fuels, 22: 1897-1901
  7. Li, Y.P., Wang, T.J., Wu, C.Z., Qin, X.X., Tsubaki, N. (2009). Effect of Ru Addition to Co/SiO2/HZSM-5 Catalysts on Fischer-Tropsch Synthesis of Gasoline-Range Hydrocarbons. Catal. Commun., 10: 1868-1874
  8. Liu, Z.W., Li, X., Asami, K., Fujimoto, K. (2007). Syngas to Iso-paraffins over Co/SiO2 Combined with Metal/Zeolite Catalysts. Fuel Process. Technol., 88: 165-170
  9. He, J.J., Yoneyama, Y., Xu, B.L., Nishiyama, N., Tsubaki, N. (2005). Designing a Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins. Langmuir, 21: 1699-1702
  10. Bao, J., He, J.J., Zhang, Y., Yoneyama, Y., Tsubaki, N. (2008). A Core/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction. Angewandte Chemie International, 47: 353-356
  11. Yang, G.H., He, J.J., Yoneyama, Y., Tan, Y.S., Tsubaki, N. (2007). Preparation, Characterization and Reaction Performance of H-ZSM-5/Cobalt/Silica Capsule Catalysts with Different Sizes for Direct Synthesis of Isoparaffins. Appl. Catal. A, 329: 99-105
  12. Li, X., He, J., Meng, M., Yoneyama, Y., Tsubaki, N. (2009). One-step Synthesis of H–β Zeolite-Enwrapped Co/Al2O3 Fischer-Tropsch Catalyst with High Spatial Selectivity. J. Catal., 265: 26-34
  13. Ryu, J.H., Kang, S.H., Kim, J.H., Lee, Y.J., Jun, K.W. (2015). Fischer-Tropsch Synthesis on Co-Al2O3-(Promoter)/ZSM-5 Hybrid Catalysts for the Production of Gasoline Range Hydrocarbons. Korean J. Chem. Eng., 32: 1993-1998
  14. Zsoldos, Z., Garin, F., Hilaire, L., Guczi, L., (1996). Genesis of Cobalt Oxide-Induced Surface Structure in PtCoxAl2O3 Catalysts. J. Mol. Catal. A, 111: 113-122
  15. de la Osa, A.R., De Lucas, A., Romero, A., Valverde, J.L., Sánchez, P., (2011). Influence of the Catalytic Support on the Industrial Fischer-Tropsch Synthetic Diesel Production. Catal. Today, 176: 298-302
  16. Bae, J.W., Kim, S.M., Kang, S.H., Chary, K.V.R., Lee, Y.J., Kim, H.J., Jun, K.W. (2009). Effect of Support and Cobalt Precursors on the Activity of Co/AlPO4 Catalysts in Fischer-Tropsch Synthesis. J. Mol. Catal. A, 311: 7-16
  17. Łojewska, J., Kołodziej, A., Łojewski, T., Kapica, R., Tyczkowski, J., (2009). Structured Cobalt Oxide Catalyst for VOC Combustion. Part I: Catalytic and Engineering Correlations. Appl. Catal. A, 366: 206-211
  18. Cheon, J.Y., Kang, S.H., Bae, J.W., Park, S.J., Jun, K.W., Dhar, G.M., Lee, K.Y. (2010). Effect of Active Component Contents to Catalytic Performance on Fe-Cu-K/ZSM-5 Fischer-Tropsch Catalyst. Catal. Lett., 134: 233-241
  19. Beale, A.M., Sankar, G. (2006). Understanding the Crystallization of Nanosized Cobalt Aluminate Spinel from Ion-Exchanged Zeolites Using Combined in situ QEXAFS/XRD. Chem. Mater., 18: 263-272
  20. Lo´nyi, F., Valyon, J. (2001). On the Interpretation of the NH3-TPD Patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater., 47: 293-301
  21. Kang, S.H., Bea, J.W., Sai Prasad, P.S. and Jun, K.W. (2008). Fischer-Tropsch Synthesis Using Zeolite-Supported Iron Catalysts for the Production of Light Hydrocarbons. Catal. Lett., 125: 264-270
  22. Lee, Y.J., Park, J.Y., Jun, K.W., Bae, J.W. and Viswanadham, N. (2008). Enhanced Production of C2-C4 Olefins Directly from Synthesis Gas. Catal. Lett., 126: 149-154

Last update:

No citation recorded.

Last update: 2021-09-19 01:37:56

  1. Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis

    Hodala J.L.. International Journal of Hydrogen Energy, 46 (4), 2021. doi: 10.1016/j.ijhydene.2019.12.021
  2. A review of domestic research trends of Fischer-Tropsch for the production of light hydrocarbons and middle distillates from syngas

    Kim J.. Korean Chemical Engineering Research, 57 (4), 2019. doi: 10.9713/kcer.2019.57.4.565
  3. Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates

    Chae H.J.. Catalysts, 10 (1), 2020. doi: 10.3390/catal10010099