ZnO-Porous Clay Heterostructure from Saponite as Green Catalyst for Citronellal Cyclization

Dwiarso Rubiyanto scopus  -  Department of Chemistry , Universitas Islam Indonesia, Indonesia
Nurcahyo Iman Prakoso scopus  -  Department of Chemistry , Universitas Islam Indonesia, Indonesia
Imam Sahroni orcid scopus  -  Department of Chemistry , Universitas Islam Indonesia, Indonesia
Rico Nurillahi  -  Department of Chemistry , Universitas Islam Indonesia, Indonesia
*Is Fatimah orcid scopus  -  Department of Chemistry , Universitas Islam Indonesia, Indonesia
Received: 15 Sep 2019; Revised: 9 Nov 2019; Accepted: 13 Nov 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Green conversion in organic synthesis is one of the interesting and important topics in green chemistry. The use of heterogeneous catalysis instead of homogeneous catalysis offers some advantages, such as easy separation and reusability. In this research, a heterogeneous acid catalyst was prepared from saponite by immobilizing ZnO in the form of a pillared clay (Zn/PILS) and Zn supported on porous clay heterostructure (Zn/PCH). Physicochemical studies involving X-ray diffraction measurement, surface analysis using a gas sorption analyzer, and surface acidity measurement were performed. Results indicated that the increasing surface acidity and the high specific surface area of the material were the relevant physicochemical properties that facilitate environment-friendly citronellal cyclization. The higher values for both parameters in Zn/PCH than in Zn/PILS linearly affected citronellal conversion and the selectivity for isopulegol production. Zn/PCH demonstrated a conversion rate of 98.9% for a 3-hour reaction and a selectivity of 100% for isopulegol production, and it exhibited reusability properties. Copyright © 2020 BCREC Group. All rights reserved

Keywords
Citronellal; Cyclization; Pillared Clay; Porous Clay Heterostructure; ZnO

Article Metrics:

  1. Lenardão, E.J., Botteselle, G.V., de Azambuja, F., Perin, G., Jacob, R.G. (2007). Citronellal as key compound in organic synthesis. Tetrahedron, 63, 6671–6712.
  2. Chuah, G. (2001). Cyclisation of Citronellal to Isopulegol Catalysed by Hydrous Zirconia and Other Solid Acids. Journal of Catalysis, 200, 352–359.
  3. Fatimah, I., Rubiyanto, D., Huda, T., Yudha, S.P., Kartika, N.C. (2016). Novel sulphated zirconia pillared clay nanoparticles as catalyst in microwave assisted conversion of citronellal. Material Technology, 31(4), 222–228.
  4. González, B., Pérez, A.H., Trujillano, R., Gil, A., Vicente, M.A. (2017). Microwave-assisted pillaring of a montmorillonite with al-polycations in concentrated media. Materials, 10(8), 1–8.
  5. Kooli, F., Liu, Y., Hbaieb, K., Al-Faze, R. (2017). Preparation and catalytic activities of porous clay heterostructures from aluminium-intercalated clays: Effect of Al content. Clay Minerals, 52, 521–535.
  6. Chmielarz, L., Kowalczyk, A., Skoczek, M., Rutkowska, M., Gil, B., Natkański, P., Radko, M., Motak, M., Dębek, R., Ryczkowski, J. (2018). Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Applied Clay Science, 160, 116–125.
  7. Saboya, R.M.A., Cecilia, J.A., García-Sancho, C., Luna, F.M.T., Rodríguez-Castellón, E., Cavalcante, C.L. (2016). WO3-based catalysts supported on porous clay heterostructures (PCH) with Si-Zr pillars for synthetic esters production. Applied Clay Science, 124–125, 69–78.
  8. Aznárez, A., Delaigle, R., Eloy, P., Gaigneaux, E.M., Korili, S.A., Gil, A.(2015).Catalysts based on pillared clays for the oxidation of chlorobenzene. Catalysis Today, 246, 15–27.
  9. Sanchis, R., Cecilia, J.A., Soriano, M.D., Vázquez, M.I., Dejoz, A., López-Nieto, J.M., Rodriguez-Castellón, E., Solsona, B. (2018). Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chemical Engineering Journal, 334, 1159–1168.
  10. Cramarossa, M.R., Forti, L., Pagnoni, U.M., Vidali, M. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science and Technology, 6(10), 3419–3429.
  11. Cecilia, J.A., García-Sancho, C., Vilarrasa-García, E., Jiménez-Jiménez, J., Rodriguez-Castellón, E. (2018). Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chemical Record, 18(7), 1085–1104.
  12. Kooli, F., Liu, Y., Hbaieb, K., Al-faze, R. (2016). Microporous and Mesoporous Materials Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives. Microporius and Mesoporous Materials, 226, 482–492.
  13. Chmielarz, L., Piwowarska, Z., Kuśtrowska, P., Węgrzyna, A., Gil, B., Kowalczyk, A., Dudek, B., Dziembaj, R., Michalik, M. (2011). Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Applied Clay Science, 53(2), 164–173.
  14. Luna, F.M.T., Cecilia, J.A., Saboya, R.M.A., Barrera, D., Sapag, K., Rodríguez-Castellón, E., Cavalcante, C.L. (2018). Natural and modified montmorillonite clays as catalysts for synthesis of biolubricants. Materials, 11(9), 6–9.
  15. Molina, C.B., Casas, J.A., Pizarro, A., Rodriguez, J.J. (2011). Pillared Clays as Green Chemistry Catalysts: Application to Wastewater Treatment, in Clay: Types, Properties and Uses, 435–447.
  16. Fatimah, I., Rubiyanto, D., Huda, T., Handayani, S., Ilahi, O.M. (2015). Ni Dispersed on Sulfated Zirconia Pillared Montmorillonite as Bifunctional Catalyst in Eco- Friendly Citronellal Conversion. Engineering Journal, 19, 43–53.
  17. Fatimah, I., Rubiyanto, D., Huda, T., Zuhrufa, Z., Yudha, S.P., Kartika, N.C. (2016). Novel sulphated zirconia pillared clay nanoparticles as catalyst in microwave assisted conversion of citronellal. Material Technology, 31(4), 222-228.
  18. Nisyak, K., Iftitah, E.D., Tjahjanto, R.T. (2017). Konversi Sitronelal Menjadi Senyawa Isopulegol dengan Katalis ZnBr2/β-Zeolit. Jurnal Kimia dan Kemasan, 39, 47-54.
  19. Khedkar, M.V., Somvanshi, S.B., Humbe, A.V., Jadhav, K.M. (2019). Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. Journal of Non-Crystalline Solids, 511, 140–146.
  20. Fatimah, I., Yudha, S.P. (2017). N-[3-(Trimethoxysilyl)propyl]ethylenediamine functionalized saponite as adsorbent of nickel from aqueous solution. Engineering Journal, 21(2), 107-121.
  21. Wang, Y., Su, X., Xu, Z., Wen, K., Zhang, P., Zhu, J., He, H. (2016). Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene. Applied Surface Science, 363, 113–121.
  22. Tassanapayak, R., Magaraphan, R., Manuspiya, H. (2008). Functionalized porous clay heterostructure for heavy metal adsorption from wastewater. Advanced Materials Research, 55–57, 617–620.
  23. Pinto, M.L., Marques, J., Pires, J. (2012). Porous clay heterostructures with zirconium for the separation of hydrocarbon mixtures. Separation and Purification Technology, 98, 337–343.
  24. Zhao, P., Zhu, L. (2016). Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor ai. Frontier Environmental Science Engineering, 10, 219–228.
  25. Polverejan, M., Pauly, T.R., Pinnavaia, T.J. (2000). Acidic porous clay heterostructures (PCH): Intragallery assembly of mesoporous silica in synthetic saponite clays. Chemistry of Materials, 12, 2698–2704.
  26. Fatimah, I., Rubiyanto, D., Huda, T. (2015). Preparation and characterization of Ni/Zr-Saponite as catalyst in catalytic hydrogen transfer reaction of isopulegol. Material Science Forum, 827, 311-316.
  27. Fatimah, I. (2009). Zirconium dioxide dispersed in SiO2-montmorillonite: Heterogeneous catalyst for citronellal conversion to isopulegol. Journal of Applied Science Research, 5, 1277–1284.
  28. Cramarossa, M.R., Forti, L., Pagnon, U.M., Vidali, M. (2001). Cyclization of Citronellal to Menthone and Isomenthone Catalyzed by Al/Fe-Pillared Clay. Synthesis, 2, 52–54.