Kinetic Study of the Catalytic Pyrolysis of Oil-Containing Waste

Kirill Chalov -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Yury Lugovoy -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Yury Kosivtsov -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Mikhail Sulman -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
*Esther Sulman -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Valentina Matveeva Valentina Matveeva -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Antonina Stepacheva -  Department of Biotechnology and Cemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026,, Russian Federation
Received: 29 Jun 2016; Published: 11 Oct 2016.
Open Access Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

Basing on the experimental data the optimal parameters of the pyrolysis of heavy and residual hydrocarbons of oil were defined as follows: temperature of 500 °С; catalyst  of CoCl2 with the catalyst loading 5% (wt.) of the substrate weight. Under the optimal conditions the kinetic investigation of the pyrolysis process was carried out using the thermogravimetric method. According to the investigation, it was found that the activation energy of the catalytic pyrolysis of oil-containing waste decreased by 20-30 kJ/mol in comparison to non-catalytic process. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 13th July 2015; Revised: 25th March 2016; Accepted: 1st April 2016

How to Cite: Chalov, K., Lugovoy, Y., Kosivtsov, Y., Sulman, M., Sulman, E., Matveeva, V., Stepacheva, A. (2016). Kinetic Study of the Catalytic Pyrolysis of Oil-Containing Waste. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3): 330-338 (doi:10.9767/bcrec.11.3.572.330-338)

Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.572.330-338

Keywords
thermocatalytic processing; pyrolysis; heavy and residual hydrocarbons; metals chlorides; kinetic

Article Metrics:

  1. Wang, Z., Guo, Q., Liu, X., Cao, C. (2007). Low Temperature Pyrolysis Characteristics of Oil Sludge under Various Heating Conditions. Energy Fuels, 21: 957-962.
  2. Kurochkin, A.K., Tamm, T. (2010). Oil slime – resource raw materials for production of light motor fuels and road bitumens. Sphere petrogas, 4: 72-81.
  3. Kuriakose, A.P., Manjooran, S.K.B. (1994). Utilization of refinery sludge for lighter oils and industrial bitumen. Energy Fuels, 8: 788-792.
  4. Shie, J.-L., Lin, J.-P., Chang, C.-Y., Lee, D.-J., Wud, C.-H. (2003). Pyrolysis of oil sludge with additives of sodium and potassium compounds. Resour. Conserv. Recycl., 39: 51-64.
  5. Bokovikova, T. N., Shperber, E. R., Shperber, D. R. (2011). Elaboration of application methods for trice oil emulsions and oil-slimes. NAFTA. 62 (7-8): 253-256.
  6. Shie, J.-L., Chang, C.-Y., Lin, J.-P., Lee, D.-J., Wu, C.-H. (2002) Use of Inexpensive Additives in Pyrolysis of Oil Sludge. Energy Fuels. 16: 102-108.
  7. Rasul, M.G., Jahirul, M.I. (2012) Recent Developments in Biomass Pyrolysis for Bio-Fuel Production: Its Potential for Commercial Applications. Recent Researches in Environmental and Geological Sciences. 256-265
  8. Bokovikova, T.N., Shperber, D.R., Shperber, E.R. (2011). Application of oil-slimes in road base and surface construction. NAFTA. 62 (11-12): 383-385.
  9. Shie, J.-L., Chang, C.-Y., Lin, J.-P., Wu, C.-H., Lee, D.-J. (2000). Resources recovery of oil sludge by pyrolysis: kinetics study. J. Chem. Technol. Biotechnol. 75: 443-450.
  10. Karayildirim, T., Yanik, J., Yuksel, M., Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel. 85: 1498-1508.
  11. Shie, J.-L., Chang, Ch.-Y., Lin, J.-P., Wu, Ch.-H., Lee, D.-J. (2000). Resources recovery of oil sludge by pyrolysis: kinetics study. J. Chem. Technol. Biotechnol. 75: 443-450.
  12. Fonts, I., Kuoppala, E., Oasmaa, A. (2009). Physicochemical Properties of Product Liquid from Pyrolysis of Sewage Sludge. Energy Fuels. 23: 4121-4128.
  13. Karayildirim, T., Yanik, J., Yuksel, M., Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel. 85: 1498-1508.
  14. Rulkens, W. (2008). Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options. Energy Fuels. 22(1): 9-15.
  15. Kaminsky, W., Zorriqueta, I.-J. N. (2007). Catalytical and thermal pyrolysis of polyolefins. J. of Anal. Appl. Pyrol. 79(1-2): 368-374.
  16. Sulman, M., Kosivtsov, Yu., Sulman, E., Alfyorov, V., Lugovoy, Yu., Molchanov, V., Tyamina, I., Misnikov, O., Afanasjev, A., Kumar, N., Murzin, D. (2009). Influence of aluminosilicate materials on the peat low-temperature pyrolysis and gas formation. Chem. Eng. J. 154: 355-360.
  17. Zou, X., Yao, J., Yang, X., Song, W., Lin, W. (2007). Catalytic Effects of Metal Chlorides on the Pyrolysis of Lignite. Energy Fuels. 21: 619-624.
  18. Blasi, C.D., Branca, C., Galgano, A. (2008). Products and Global Weight Loss Rates of Wood Decomposition Catalyzed by Zinc Chloride. Energy Fuels. 22(1): 663-670.
  19. Junwon, J., Jinhwan, K., Jin-Young B. (2005). Effects of Lewis acid-type transition metal chloride additives on the thermal degradation of ABS. Polym. Degrad. Stab. 88(2): 324-332.
  20. Shilina M.I., Bakharev R.V., Smirnov V.V. (2008). Aluminum halide-cobalt halide polynuclear complexes active in low-temperature conversion of alkanes: formation, molecular structures, and IR spectra. Russ. Chem. Bull. 57(11): 2251-2260.
  21. Kaisersberger, E., Opfermann, J. (1991). Kinetic evaluation of exothermal reactions measured by DSC. Thermochimica Acta. 187: 151-158.
  22. Brown, M.E., Maciejewski, M., Vyazovkin S. (2000). Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, method and results. Thermochimica Acta. 355(1-2): 125-143.
  23. Fillips, P.De, Caprarils, B.De, Scarella, M., Verdone, N. (2014). Double Distribution Activation Energy Model for microalgae pyrolysis. Recent Advances in Energy, Environment and Financial Planning. 68-73.
  24. Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics. 11(2): 431-441.
  25. Minsker, K.S., Ivanova, S.R., Biglova, R.Z. (1995). Complexes of metal chlorides with proton donors - promising polyfunctional catalysts for electrophilic processes. Russ. Chem. Rev. 64(5): 429-444.
  26. Elam, S.K., Tokura, I., Saito, K. (1989). Thermal conductivity of crude oils. Exp. Therm. Fluid Sci. 2(1): 1-6.
  27. Patnaik, P. (2002) Handbook of Inorganic Chemicals. The McGraw-Hill: New York.
  28. Chalov K.V., Lugovoy Yu.V., Doluda V.Yu., Sidorov A.I., Sulman M.G., Kosivtsov Yu.Yu., Tkachenko O.P., Sulman E.M. (2014). Influence of metal chlorides on oil-slime thermocatalytic processing. Chem. Eng. J. 238: 219-226.