Structural, Thermal, Morphological, Adsorption and Catalytic Properties of Poly(BPDAH-co-ODA/PPDA)-Ag/V2O5 Nanocomposites

Govindharajan Sribala  -  Department of Polymer Technology, Kamaraj College of Engineering and Technology, India
Balakrishnan Meenarathi  -  Department of Polymer Technology, Kamaraj College of Engineering and Technology, India
*Ramasamy Anbarasan orcid  -  Department of Chemical Engineering, National Taiwan University, Taiwan, Province of China
Received: 14 Aug 2019; Revised: 24 Nov 2019; Accepted: 26 Nov 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Thermally stable polyimides (PIs) were prepared by condensation technique at 160 ºC for 5 hours in N-methylpyrrolidone (NMP) medium under N2 atmosphere both in the presence and absence of metal (Ag) and metaloxide (MO) (V2O5) nanoparticles (NPs). The synthesized polymers are characterized by Fourier Transform Infra Red (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FE-SEM and EDX). The FT-IR spectrum showed a peak at 1786 cm-1 corresponding to the C=O stretching of dianhydride. The aromatic proton signals appeared between 6.7 and 7.5 ppm in the 1H-NMR spectrum of the resultant PIs. The oxydianiline (ODA) based PI with Ag NP loaded system exhibited the highest Tg value. The apparent rate constant values for the adsorption and catalytic reduction of p-nitrophenol (PNP), Cr6+ and rhodamine 6G (R6G) dye were determined with the help of UV-visible spectrophotometer. Among the catalysts, the system loaded with V2O5 NP has higher kapp values. The experimental results are critically analyzed and compared with the previously available literature values. Copyright © 2020 BCREC Group. All rights reserved


Keywords: Polyimides; Synthesis; Characterization; DSC; FESEM; kapp

Article Metrics:

  1. Liaw, D.J., Liaw, B.Y., Li, L.I., Sillion, B., Mercier, R., Thiria, R., Sekiguchi, H. (1998) Synthesis and characterization of new soluble polyimides from 3,3’,4,4’-benzhydrol tetracarboxylic dianhydride and various diamines. Chem. Mater. 10, 734-739.
  2. Tong, Y., Huang, W., Luo, J., Ding, M. (1999) Synthesis and properties of aromatic polyimides derived from 2,2’3,3’-biphenyletracarboxylic dianhydride. J. Polym. Sci. Part A Polym. Chem. 37, 1425-1433.
  3. Tanaka, K., Kita, H., Okamoto, K., Nakamura, A., Kusubi, Y. (1989) Gas permeability and permselectivity in polyimides based on 3,3’,4,4’-biphenyltetracarboxylic dianhydride. J. Membr. Sci. 47, 203-215.
  4. Pasahan, A., Koytepe, S., Ekinci, E. (2012) Synthesis, characterization of pyridine based polyimides and their use as glucose oxidase immobilization media. E. Polym. 37, 1-12.
  5. Fang, X.Z., Li, Q.X., Wang, Z., Yang, Z.H., Gao, L.X., Ding, M.X. (2004) Synthesis and properties of novel polyimides derived from 2,2’,3,3’-benzophenone tetracarboxylic dianhydride. J. Polym. Sci. Part A Polym. Chem. 42, 2130-2144.
  6. Marek, M., Schneider, B., Hlavata, D., Labsky, J., Bleha, M. (1996) Study on polyimides prepared from 3,3’,4,4’-benzophenone tetracarboxylic dianhydride and 4,4’-(alkene-1-n-diyldioxy) dianilines. J. Macromol. Sci. Pure Appl. Chem. 33, 477-489.
  7. Lazareva, Y.N., Vidyakin, M.N., Alentiev, A.Y., Yablokova, M.Y., Kuznetsov, A.A., Ronova, I.A. (2009) Transport propertie of polyimides derived from benzophenone tetracarboxylic dianhydride and other diamines. Polym. Sci. Ser. A, 51, 1068-1074.
  8. Lakouraj, M.M., Rahpaima, G., Azimi, R. (2016) Organosoluble xanthone based polyimides: Synthesis, characterization antioxidant activity and heavy metal sorption. Mater. Technol. 50, 471-478.
  9. Yegorov, A.S., Wozniak, A.I., Ivanov, V.S., Averina, E.A., Zhdanovich, O.A. (2016) Development and optimization of producing 3,3’,4,4’-benzophenone tetracarboxylic dianhydride. Orient. J. Chem. 32, 3063-3070.
  10. Mundhenke, R.F., Schwartz, W.T. (1990) Chemical properties of 4,4’-oxydiphthalic anhydride based polyimides. High Peform. Polym. 2, 57-66.
  11. Ozturk, R.D.T., Apohan, N.K., Guogor, A. (2013) Synthesis and characterization of novel polyimides based on 2,6-bis(m-aminophenoxy) benzoyl naphthalene. Chem. Eng. Trans. 32,1681-1686.
  12. Tanaka, K., Kita, H., Okano, M., Ikamoto, K.I. (1992) Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 33, 585-592
  13. Mutar, M.A. (2015) New flame retardant and thermally stable PIs based on pyromellitic dianhydride and 3,3’,4,4’-benzophenone tetracarboxy dianhydride with diamines containing halogens and phosphorous components in the main chain: Synthesis and characterization. Int. J. Human. Manag. Sci. 3, 259-268.
  14. Morikawa, A., Nabeshima, S., Satoh, A., Moriyama, Y. (2013) Synthesis and characterization of PI from 4,4’-diamino diphenylether having substituents at 2,2’-position. J. Photopolym. Sci. Technol. 26: 367-372.
  15. Tamai, S., Kuroki, T., Shibuya, A., Yamaguchi, A. (2001) Synthesis and characterization of thermally stable semi-crystalline PI based on 3,3’oxydianiline and 3,3’,4,4’-biphenyl tetracarboxylic dianhydride. Polymer, 42, 2373-2378.
  16. Lee, K.W., Kowelczyk, S.P., Shaw, J.M. (1990) Surface modification of PMDA-ODA PI: Surface structure-adhesion relationship. Macromolecules, 23, 2018-2100.
  17. Chen, B.K., Wu, T.Y., Kuo, C.W., Peng, Y.C (2013) 4,4’-oxydianiline (ODA) containing sulfonated PI/protic ionic liquid composite membranes for anhydrous proton conduction. Int. J. Hyd. Ener. 38, 11321-11330.
  18. Lee, K.H., Jung, J.C. (1998) Synthesis and characterization of PI from 1,4-bis[4-n-(allyloxy) phenyl] PMDA and 4,4’-oxydianiline. Polym. Bull. 40, 407-414.
  19. Zhao, J., Hu, Q.S., Zhou, Y.X., Peng, L., Shen, Y.Z. (2018) Preparation and properties of highly organosoluble polyimides derived from 2,2’-disubstituted 4,4’-oxydianiline. High Perform. Polymer, 30, 456-464.
  20. Lee, C., Shul, Y., Han, H. (2002) Dielectric properties of oxydianiline based polyimide thin films according to the water uptake. J. Polym. Sci. Part B Polym. Phys. 40, 2190-2198.
  21. Ivanov, V.S., Yegonov, A.S., Allakhverdov, G.R., Menshikov, V.V. (2018) Synthesis and investigation of polyimide based proton exchange membranes containing polysiloxane and crown ether moiety. Orient. J. Chem. 34, 255-264.
  22. Olajire, A.A., Ifediora, N.F., Bello, M.D., Benson, N.U. (2018) Green synthesis of copper nanoparticles using Alchornea laxiflora leaf extract and their catalytic application for oxidative desulfurization of model oil. Iran. J. Sci. Technol. Trans. A Sci. 42, 1935–1946.
  23. Chao, M. (2018) Synthesis and characterization of semi-crystalline polyimides containing bridged linkages. Int. J. Polym. Sci. 2018: 1-8.
  24. Rimdusit, S., Benjapan, W., Assabumrungrat, S., Takeichi, T., Yokoto, R. (2007) Surface segregation of siloxane containing component in polysiloxane-block-polyimide and s-BPDA/ODA polyimide blends. Polym. Eng. Sci. 47: 489-498.
  25. Patel, C.B., Patel, H.S. (1999) Polyimide based on novel multifunctional maleimide derivative. Polym. Eng. Sci. 39, 1489 -1492.
  26. Fang, X., Yang, Z., Zhang, S., Gao, L., Ding, M. (2002) Polyimides derived from mellophanic dianhydride. Macromolecules, 35, 8708-8717.
  27. Wu, F., Zhou, X., Yu, X. (2017) Synthesis and characterization of novel star branched polyimidesderived from 2,2’-bis[4-(2,4-diaminohenyl] hexafluoropropane. RSC Adv. 7, 35786-35794.
  28. Seo, J., Lee, A., Oh, J., Han, H. (2000) Effect of diamines (1,4-phenyl-diamine and 4,4’-dianhydride) on water sorption behaviour of polyimide thin film. Polym. J. 32, 583-588.
  29. Huang, Y., Ma, H., Wang, S., Shen, M., Shi, X. (2012) Efficient catalytic reduction of hexavalent Chromium using Palladium nanoparticle immobilized electrospun polymer nanofibers. Appl. Mater. Inter. 4, 3054 -3061.
  30. Das, B., Sharma, M., Sarmah, J.C., Bania, K.K. (2017) Rapid reduction of dye pollutants and hexavalent chromium by silver-sulphur oxido-vanadium cluster. J. Env. Chem. Eng. 5, 4212 -4219.
  31. Pandey, N., Shukla, S.K., Singh, N.B (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites, 3, 47-66.
  32. Lee, M., Yen, B., Den, W. (2015) Chitosan as a natural polymer for heterogeneous catalysts support: A short review on its applications. Appl. Sci. 5, 1272 -1283.
  33. Khan, J., Siddiqu, M., Akram, B., Ashraf, M.A. (2018) In-situ synthesis of CuO nanoparticles in Poly(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications. Arab. J. Chem. 11, 897 -909.
  34. Pozun, Z.D., Keller, E., Tran, K., Tang, W., Henkelman, G. (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C, 117, 7598-7604.
  35. Islam, M.T., Domeniguez, N., Ahsan, M.A., Alvarez, J.J., Noveroh, J.C. (2017) Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fibers for catalytic reduction of 4-nitrophenol and organic dyes. J. Env. Chem. Eng. 5, 4185 -4193.
  36. Ali, I., Jamil, N. (2018) Biosynthesis and characterization of poly3-hydroxyalkonate (PHA) from newly isolated bacterium basillus sp. A2R1. Iran. J. Sci. Technol. Trans. A Sci. 42: 371-378.
  37. Mei, Z.Y., Wei, Z.X., Sheng, C.D., Fang, L., Tan, X., Farag, A.S. (2017) Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Sci. Chin. 60, 685-696.
  38. Liou, G.S., Hsiao, H.H. (2002) Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N,N′-bis(3-aminobenzoyl)-N,N′-diphenyl-1,4-phenylenediamine. J. Polym. Sci. Part A Polym. Chem. 40, 2564-2574.
  39. Arbash, A., Ahmad, Z., Sagheer, A.F., Ali, A.A.M. (2006) Microstructure and thermomechanical properties of polyimide-silica nanocomposites. J. Nanomat. 2006, 1–9.
  40. Jwo, S.L., Whang, W.T., Liaw, W.C. (1999) Effects of the solubility parameter of polyimides and the segment length of siloxane block on the morphology and properties of poly(imide siloxane). J. Appl. Polym. Sci. 74, 2832-2847.
  41. Liu, Y., Jiang, G., Li, L., Chen, H., Huang, Q., Jiang, T., Du, X., Chen, W (2015) Preparation of Au/PAN nanofibrous membranes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 50, 8120–8127.
  42. Patnaik, S., Das, K.K., Mohanty, A., Parida, K. (2018) Enhanced photo catalytic reduction of Cr(VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal. Today, 315, 52-66.
  43. Saranya, G., Kaviya, M., Meenarathi, B., Anbarasan, R. (2017) Synthesis, characterization and catalytic activity of chitosan Shiff base/V2O5 nanocomposite. Int. J. Chem. Biol. Sci. 3, 18-40.

No citation recorded.