Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

DOI: https://doi.org/10.9767/bcrec.11.2.552.210-219
Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 20-06-2016
Published: 20-08-2016
Section: The International Conference on Fluids and Chemical Engineering (FluidsChE 2015)
Fulltext PDF Tell your colleagues Email the author

Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO2-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM), energy dispersion X-ray spectroscopy (EDX), liquid N2 adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO2 was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO2 and H2) from the methane dry reforming reaction was measured by gas chromatography (GC) coupled with thermal conductivity detector (TCD). The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H2 and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H2 and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H2 and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 21st January 2016; Revised: 23rd February 2016; Accepted: 23rd February 2016

How to Cite: Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016). Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 210-219 (doi:10.9767/bcrec.11.2.552.210-219)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.552.210-219

Article Metrics: (click on the button below to see citations in Scopus)

cited by count 

Keywords

Methane dry reforming; hydrogen; syngas; Co/CeO2 Catalyst; CO-rich Hydrogen Gas

  1. Bamidele V. Ayodele 
    Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang,, Malaysia
  2. Maksudur R. Khan 
    Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang,, Malaysia
  3. Chin Kui Cheng 
    Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang,, Malaysia
  1. Ursua, A. (2012). Hydrogen production from water Electrolysis : Current Status and Future Trends: in Proceedings of the IEEE, 100 (2): 410-426.
  2. Kirtay, E. (2011). Recent advances in production of hydrogen from biomass. Energy Convers. Manag., 52 (4): 1778-1789.
  3. Balat, H., Kirtay, E. (2010). Hydrogen from biomass - Present scenario and future prospects. Int. J. Hydrogen Energy, 35 (14): 7416-7426
  4. Balat, M., Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. Int. J. Hydrogen Energy, 34 (9):3589-3603.
  5. Mekhilef, S., Saidur, R., Safari, A. (2012). Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev., 16(1): 981-989.
  6. Kirubakaran, A., Jain, S., Nema, R.K. (2009). A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev., 13 (9): 2430-2440
  7. Arora, K. (2014). International journal of Emerging Trends in Science and Technology. Int. J. Emerg. Trends Sci. Technol., 1(10): 1691-1698.
  8. Sharaf, O.Z., Orhan, M.F. (2014). An overview of fuel cell technology: Fundamentals and application. Renew. Sustain. Energy Rev., 32: 810-853.
  9. Xiong, H., Moyo, M., Motchelaho, M.A., Tetana, Z.N., Dube, S.M.A., Jewell, L.L., Coville, N.J. (2014). Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J. Catal., 311: 80-87.
  10. Gabriel, K.J., Noureldin, M., El-Halwagi, M. M., Linke, P., Jiménez-Gutiérrez, A., Martínez, D.Y. (2014). Gas-to-liquid (GTL) technology: Targets for process design and water-energy nexus. Curr. Opin. Chem. Eng., 5: 49-54.
  11. Aasberg-Petersen, K., Dybkjær, I., Ovesen, C. V., Schjødt, N.C., Sehested, J., Thomsen, S.G. (2011). Natural gas to synthesis gas - Catalysts and catalytic processes. J. Nat. Gas Sci. Eng., 3 (2): 423-459.
  12. Li, K., Zhang, R., Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. Int. J. Hydrogen Energy, 35(7): 2722–2726.
  13. Wu, T.Y., Mohammad, A.W. (2007). Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: effect of pressure on membrane fouling Biochem. Eng. Journal, 35(3): 309-317.
  14. Yoshiie, R., Taya, Y., Ichiyanagi, T., Ueki, Y., Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108: 67-72.
  15. Man, Y., Yang, S., Xiang, D., Li, X., Qian, Y. (2014). Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture. J. Clean. Prod., 71: 59-66.
  16. Bhandari, R., Trudewind, C. A., Zapp, P. (2014). Life cycle assessment of hydrogen production via electrolysis: a review. J. Clean. Prod., 85: 151-163.
  17. Koh, A., Chen, L., Keeleong, W., Johnson, B., Khimyak, T., Lin, J. (2007). Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel–cobalt catalysts. Int. J. Hydrogen Energy, 32(6): 725-730.
  18. Kothari, R., Buddhi, D., Sawhney, R.L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Journal, 12(2): 553-563
  19. Sehested, J. (2006). Four challenges for nickel
  20. steam-reforming catalysts Catal. Today, 111 (1-2): 103-110.
  21. Braga, T.P., Santos, R.C.R., Sales, B.M.C., da Silva, B.R., Pinheiro, A.N., Leite, E.R., Valentini, A. (2014). CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology,” Chinese J. Catal., 35 (4): 514-523.
  22. Whitemore, N.W. (2007). Greenhouse gas catalytic reforming to syngas. Columbia University in the City of New York.
  23. Budiman, A.W., Song, S.H., Chang, T.S., Shin, C.H., Choi, M.J. (2012). Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. Catal. Surv. from Asia, 16(4): 183-197.
  24. Ruckenstein, E., Wang, H.Y. (2002). Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/g-Al2O3 Catalysts, J. Catal., 205(2): 289-293.
  25. Lavoie, J.M. (2014). Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem., 2: 1-17.
  26. Luisetto, I., Tuti, S., Di Bartolomeo, E. (2012). Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int. J. Hydrogen Energy, 37: 15992-15999.
  27. Abasaeed, A.E., Al-fatesh, A.S., Naeem, M.A., Ibrahim, A.A., Fakeeha, A.H. (2015) Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane, Int. Hydrog. Energy, 40: 6818-6826.
  28. Lee, S.S., Zhu, H., Contreras, E.Q. Prakash, A., Puppala, H.L., Colvin, V.L. (2012). High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications, Chem. Mater. 24: 424-432.
  29. Djaidja, A., Libs, S., Kiennemann, A., Barama, A. (2006). Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Catal. Today, 113(3-4): 194-200.
  30. Abd. El-Hafiz, D.R., Ebiad, M.A., El-salamony, R.A. (2014). Hydrogen selectivity and carbon behavior during gasoline steam reforming over nano-Al2O3 catalysts. Mater. Renew. Sustain. Energy, 3(3): 1-13.
  31. Foo, S.Y., Cheng, C.K., Nguyen, T.H., Adesina, A.A. (2011). Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catal. Today, 164(1): 221-226.
  32. Du, X., Zhang, D., Shi, L., Gao, R., Zhang, J. (2012). Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. J. Phys. Chem., 1: 10009-10016.
  33. Da Silva, A.M., De Souza, K.R., Mattos, L.V., Jacobs, G., Davis, B.H., Noronha, F.B. (2011). The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol, Catal. Today, 164: 234-239.
  34. Verykios, X.E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int. J. Hydrogen Energy, 28(10): 1045-1063.
  35. Shi, C., Zhang, A., Li, X., Zhang, S., Zhu, A., Ma, Y., Au, C. (2012). Ni-modified Mo2C catalysts for methane dry reforming, Appl. Catal. A Gen., 432: 164-170.
  36. Sajjadi, S. M., Haghighi, M., Rahmani, F. (2014). Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni-Co/Al2O3-ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. J. Sol-Gel Sci. Technol. Vol…. : 1-14
  37. Rahemi, N., Haghighi, M., Babaluo, A.A., Allahyari, S., Jafari, M.F. (….) Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: Impregnated vs. plasma-treated catalyst, Energy Convers. Manag., 84: 50-59.
  38. Serrano-Lotina, A., Daza, L. (2014). Influence of the operating parameters over dry reforming of methane to syngas. Int. J. Hydrogen Energy, 39(8): 4089-4094.
  39. Sharifi, M., Haghighi, M., Rahmani, F., Karimipour, S. (2014). Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3-ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods. J. Nat. Gas Sci. Eng., 21: 993-1004.
  40. Nematollahi, B., Rezaei, M., Khajenoori, M. (2011). Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int. J. Hydrogen Energy, 36 (4): 2969-2978.