Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

License URL: http://creativecommons.org/licenses/by-sa/4.0

Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO2-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM), energy dispersion X-ray spectroscopy (EDX), liquid N2 adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO2 was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO2 and H2) from the methane dry reforming reaction was measured by gas chromatography (GC) coupled with thermal conductivity detector (TCD). The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H2 and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H2 and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H2 and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved
Received: 21st January 2016; Revised: 23rd February 2016; Accepted: 23rd February 2016
How to Cite: Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016). Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 210-219 (doi:10.9767/bcrec.11.2.552.210-219)
Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.552.210-219
Article Metrics: (click on the button below to see citations in Scopus)
Article Metrics:
- Ursua, A. (2012). Hydrogen production from water Electrolysis : Current Status and Future Trends: in Proceedings of the IEEE, 100 (2): 410-426.
- Kirtay, E. (2011). Recent advances in production of hydrogen from biomass. Energy Convers. Manag., 52 (4): 1778-1789.
- Balat, H., Kirtay, E. (2010). Hydrogen from biomass - Present scenario and future prospects. Int. J. Hydrogen Energy, 35 (14): 7416-7426
- Balat, M., Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. Int. J. Hydrogen Energy, 34 (9):3589-3603.
- Mekhilef, S., Saidur, R., Safari, A. (2012). Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev., 16(1): 981-989.
- Kirubakaran, A., Jain, S., Nema, R.K. (2009). A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev., 13 (9): 2430-2440
- Arora, K. (2014). International journal of Emerging Trends in Science and Technology. Int. J. Emerg. Trends Sci. Technol., 1(10): 1691-1698.
- Sharaf, O.Z., Orhan, M.F. (2014). An overview of fuel cell technology: Fundamentals and application. Renew. Sustain. Energy Rev., 32: 810-853.
- Xiong, H., Moyo, M., Motchelaho, M.A., Tetana, Z.N., Dube, S.M.A., Jewell, L.L., Coville, N.J. (2014). Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J. Catal., 311: 80-87.
- Gabriel, K.J., Noureldin, M., El-Halwagi, M. M., Linke, P., Jiménez-Gutiérrez, A., Martínez, D.Y. (2014). Gas-to-liquid (GTL) technology: Targets for process design and water-energy nexus. Curr. Opin. Chem. Eng., 5: 49-54.
- Aasberg-Petersen, K., Dybkjær, I., Ovesen, C. V., Schjødt, N.C., Sehested, J., Thomsen, S.G. (2011). Natural gas to synthesis gas - Catalysts and catalytic processes. J. Nat. Gas Sci. Eng., 3 (2): 423-459.
- Li, K., Zhang, R., Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. Int. J. Hydrogen Energy, 35(7): 2722–2726.
- Wu, T.Y., Mohammad, A.W. (2007). Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: effect of pressure on membrane fouling Biochem. Eng. Journal, 35(3): 309-317.
- Yoshiie, R., Taya, Y., Ichiyanagi, T., Ueki, Y., Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108: 67-72.
- Man, Y., Yang, S., Xiang, D., Li, X., Qian, Y. (2014). Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture. J. Clean. Prod., 71: 59-66.
- Bhandari, R., Trudewind, C. A., Zapp, P. (2014). Life cycle assessment of hydrogen production via electrolysis: a review. J. Clean. Prod., 85: 151-163.
- Koh, A., Chen, L., Keeleong, W., Johnson, B., Khimyak, T., Lin, J. (2007). Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel–cobalt catalysts. Int. J. Hydrogen Energy, 32(6): 725-730.
- Kothari, R., Buddhi, D., Sawhney, R.L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Journal, 12(2): 553-563
- Sehested, J. (2006). Four challenges for nickel
- steam-reforming catalysts Catal. Today, 111 (1-2): 103-110.
- Braga, T.P., Santos, R.C.R., Sales, B.M.C., da Silva, B.R., Pinheiro, A.N., Leite, E.R., Valentini, A. (2014). CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology,” Chinese J. Catal., 35 (4): 514-523.
- Whitemore, N.W. (2007). Greenhouse gas catalytic reforming to syngas. Columbia University in the City of New York.
- Budiman, A.W., Song, S.H., Chang, T.S., Shin, C.H., Choi, M.J. (2012). Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. Catal. Surv. from Asia, 16(4): 183-197.
- Ruckenstein, E., Wang, H.Y. (2002). Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/g-Al2O3 Catalysts, J. Catal., 205(2): 289-293.
- Lavoie, J.M. (2014). Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem., 2: 1-17.
- Luisetto, I., Tuti, S., Di Bartolomeo, E. (2012). Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int. J. Hydrogen Energy, 37: 15992-15999.
- Abasaeed, A.E., Al-fatesh, A.S., Naeem, M.A., Ibrahim, A.A., Fakeeha, A.H. (2015) Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane, Int. Hydrog. Energy, 40: 6818-6826.
- Lee, S.S., Zhu, H., Contreras, E.Q. Prakash, A., Puppala, H.L., Colvin, V.L. (2012). High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications, Chem. Mater. 24: 424-432.
- Djaidja, A., Libs, S., Kiennemann, A., Barama, A. (2006). Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Catal. Today, 113(3-4): 194-200.
- Abd. El-Hafiz, D.R., Ebiad, M.A., El-salamony, R.A. (2014). Hydrogen selectivity and carbon behavior during gasoline steam reforming over nano-Al2O3 catalysts. Mater. Renew. Sustain. Energy, 3(3): 1-13.
- Foo, S.Y., Cheng, C.K., Nguyen, T.H., Adesina, A.A. (2011). Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catal. Today, 164(1): 221-226.
- Du, X., Zhang, D., Shi, L., Gao, R., Zhang, J. (2012). Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. J. Phys. Chem., 1: 10009-10016.
- Da Silva, A.M., De Souza, K.R., Mattos, L.V., Jacobs, G., Davis, B.H., Noronha, F.B. (2011). The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol, Catal. Today, 164: 234-239.
- Verykios, X.E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int. J. Hydrogen Energy, 28(10): 1045-1063.
- Shi, C., Zhang, A., Li, X., Zhang, S., Zhu, A., Ma, Y., Au, C. (2012). Ni-modified Mo2C catalysts for methane dry reforming, Appl. Catal. A Gen., 432: 164-170.
- Sajjadi, S. M., Haghighi, M., Rahmani, F. (2014). Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni-Co/Al2O3-ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. J. Sol-Gel Sci. Technol. Vol…. : 1-14
- Rahemi, N., Haghighi, M., Babaluo, A.A., Allahyari, S., Jafari, M.F. (….) Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: Impregnated vs. plasma-treated catalyst, Energy Convers. Manag., 84: 50-59.
- Serrano-Lotina, A., Daza, L. (2014). Influence of the operating parameters over dry reforming of methane to syngas. Int. J. Hydrogen Energy, 39(8): 4089-4094.
- Sharifi, M., Haghighi, M., Rahmani, F., Karimipour, S. (2014). Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3-ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods. J. Nat. Gas Sci. Eng., 21: 993-1004.
- Nematollahi, B., Rezaei, M., Khajenoori, M. (2011). Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int. J. Hydrogen Energy, 36 (4): 2969-2978.
Last update: 2021-01-25 23:53:34
Last update: 2021-01-25 23:53:40
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)