Carbon Dioxide Dry Reforming of Glycerol for Hydrogen Production using Ni/ZrO2 and Ni/CaO as Catalysts

License URL: http://creativecommons.org/licenses/by-sa/4.0

Glycerol, byproduct from the biodiesel production can be effectively utilized as the promising source of synthesis gas (syngas) through a dry reforming reaction. Combination of these waste materials with greenhouse gases which is carbon dioxide (CO2) will help to reduce environmental problem such as global warming. This dry reforming reaction has been carried out in a fixed bed batch reactor at 700 °C under the atmospheric pressure for 3 hours. In this experiment, reforming reaction was carried out using Nickel (Ni) as based catalyst and supported with zirconium (ZrO2) and calcium (CaO) oxides. The catalysts were prepared by wet impregnation method and characterized using Bruanaer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Thermo Gravimetric (TGA), and Temperature Programmed Reduction (TPR) analysis. Reaction studies show that 15% Ni/CaO give the highest hydrogen yield and glycerol conversion that peaked at 24.59% and 30.32%, respectively. This result is verified by XRD analysis where this catalyst shows low crystallinity and fine dispersion of Ni species resulted in high specific surface area which gives 44.93 m2/g that is validated by BET. Copyright © 2016 BCREC GROUP. All rights reserved
Received: 21st January 2016; Revised: 24th February 2016; Accepted: 29th February 2016
How to Cite: Arif, N.M.M., Vo, D.V.N., Azizan,M.T., Abidin S.Z. (2016). Carbon Dioxide Dry Reforming of Glycerol for Hydrogen Production using Ni/ZrO2 and Ni/CaO as Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 200-209 (doi:10.9767/bcrec.11.2.551.200-209)
Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.551.200-209
Article Metrics: (click on the button below to see citations in Scopus)
Article Metrics:
- Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013). Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8(2): 160-166.
- Pompeo, F., Nichio, N.N., Ferretti, O.A., Resasco, D. (2005). Study of Ni Catalysts on Different Supports to Obtain Synthesis Gas. International Journal of Hydrogen Energy, 30: 1399-1405.
- Mondal, P., Dang, G.S., Garg, M.O. (2011). Syngas Production through Gasification and Cleaning for Downstream Gasification – Recent Developments. Fuel Processing Technology, 92(8):1395-1410.
- Fernández, Y., Arenillas, A., Bermùdez, J.M., Menѐndez, J.A. (2010). Comparative Study of Conventional and Microwave-assisted Pyrolysis, Steam and Dry Reforming of Glycerol for Syngas Production Using a Carbonaceous Catalyst. Journal of Analytical and Applied Pyrolysis, 88(2): 155-159.
- Huang, Z., Xu, C., Liu, C., Xiao, H., Chen, J., Zhang, Y., Lei, Y. (2013). Glycerol Steam Reforming over Ni/γ-Al2O3 Catalysts Modified by Metal Oxides. Korean Journal of Chemical Engineering, 30(3): 587-592.
- Karinen, R.S., Krause, A.O.I. (2006). New Biocomponents from Glycerol. Applied Catalysis A., 306: 128-133.
- Lin, Y. (2013). Catalytic Valorization of Glycerol to Hydrogen and Syngas. International Journal of Hydrogen Energy, 38(6):2678-2700.
- Fan, X., Burton, R., Zhou, Y. (2010). Glycerol (Byproduct of Biodiesel Production) as a Source for Fuels and Chemicals - Mini Review. The Open Fuels & Energy Science Journal, 3: 17-22.
- Vaidya, P.D., Rodrigues, A.E. (2009). Glycerol Reforming for Hydrogen Production: A Review. Chemical Engineering Technology, 32(10): 1463-1469.
- Luo, N., Zhao, X., Cao, F., Xiao, T., Fan, D. (2007). Thermodynamic Study on Hydrogen Generation from Different Glycerol Reforming Processes. Energy Fuels, 21(6): 3505-3512.
- Adhikari, S., Fernando, S., Haryanto, A. (2007). A Comparative Thermodynamic and Experimental Analysis on Hydrogen Production by Steam Reforming of Glycerin. Energy Fuels, 21(4): 2306-2310.
- Adhikari, S., Fernando, S., Gwaltney, S.R., To, S.D.F., Bricka, R.M., Steele, P.H., Haryanto, A. (2007). A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Glycerol. International Journal of Hydrogen Energy, 32(14): 2875–2880.
- Lee, H.C., Siew, K.H., Gimbun, J., Cheng, C. K. (2013). Application of Cement Clinker as Ni-Catalyst Support for Glycerol Dry Reforming. Bulletin of Chemical Engineering & Catalysis, 8(2): 137-144.
- Siew, K., Lee, H., Gimbun, J., Cheng, C. (2014). Production of CO-rich Hydrogen Gas from Glycerol Dry Reforming over La-promoted Ni/Al2O3 Catalyst. International Journal Of Hydrogen Energy, 39(13): 6927-6936.
- Wang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S., Ma, X. (2009). Thermodynamic Analysis of Glycerol Dry Reforming for Hydrogen and Synthesis Gas Production. Fuel, 88(11): 2148-2153.
- Bermúdez, J.M., Fidalgo, B., Arenillas, A., Menéndez, J.A. (2012). CO2 Reforming of Coke Oven Gas over a Ni/g-Al2O3 Catalyst to Produce Syngas for Methanol Synthesis. Fuel, 9: 197-203.
- Zhang, Y., Zhang, G., Zhang, B., Guo, F., Sun, Y. (2011). Effects of Pressure on CO2 Reforming of CH4 over Carbonaceous Catalyst. Chemical Engineering Journal, 173(2): 592-597.
- Dantas, S.C., Escritori, J.C., Soeres, R.R., Hori, C.E. (2010). Effect of Different Promoters on Ni/CeZrO2 Catalyst for Autothermal Reforming and Partial Oxidation of Methane. Chemical Engineering Journal, 156(2): 380-387.
- Saad, J.M., Nahil, M.A., Wu, C., Williams, P.T. (2015). Influence of Nickel-based Catalysts on Syngas Production from Carbon Dioxide Reforming of Waste High Density Polyethylene. Fuel Processing Technology, 138: 156-163.
- Liu, S., Xiong, G., Yang, W., Xiu, L., Xiong, G., Li, C. (1999). Partial Oxidation of Ethane to Syngas over Nickel-based Catalysts Modified by Alkali Metal Oxide and Rare Earth Metal Oxide. Catalysis Letter, 63: 167-171.
- Wei, J.M., Xu, B.Q., Li, J.L., Cheng, Z.X., Zhu Q.M. (2000). Highly Active and Stable Ni/ZrO2 Catalyst for Syngas Production by CO2 Reforming of Methane. Applied Catalyst, 196(2): 167-172.
- Chang, J.S. Park, S.E., Yoo, J.W. , Park, J.N. (2000). Catalytic Behavior of Supported KNiCa Catalyst and Mechanistic Consideration for Carbon Dioxide Reforming of Methane, Journal of Catalysis. 195(1): 1-11.
- Dias, J.A.C., Assaf, J.M. (2003). Influence of Calcium Content in Ni/CaO/g-Al2O3 catalysts for CO2- reforming of methane. Catalysis Today, 85(1): 60-68.
- Ranjbar, A., Rezaei, M. (2012). Preparation of Nickel Catalysts Supported on CaO.2Al2O3 for Methane Reforming with Carbon Dioxide. International Journal of Hydrogen Energy, 37(8): 6362:6356.
- Quincoces, C., Dicundo, S., Alvarez, A.M., Gonzalez M.G. (2001). Effect of Addition of CaO on Ni/Al2O3 Catalysts over CO2 Reforming of Methane. Materials Letters, 50(1):21-27.
- Sheng, W, Jun, K.W., Roh, H.S., Liu, Z.W., Park, S.E. (2002). Comparative Study on Partial Oxidation of Methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 Catalysts. Catalysis Letter, 78(4): 215–22.
- Pompeo, F., Nichio, N.N., Souza, M.M.V.M., Cesar, D.V., Ferretti, O.A., Schmal, M. (2007). Study on Ni and Pt Catalysts Supported on α-Al2O3 and ZrO2 Applied in Methane Reforming with CO2. Applied Catalysis A: General, 316(2): 175-183.
- Therdthianwong, S., Therdthianwong, A., Siangchin, C., Yongprapat, S. (2008). Synthesis Gas Production from Dry Reforming of Methane over Ni/Al2O3 Stabilized by ZrO2. International Journal of Hydrogen Energy, 33(3): 991-999.
- Yang, X., Wang, X, Gao, G., Wendurima, Liu, E., Shi, Q., Zhang, J., Han, C., Wang, J., Lu, H., Liu, J., Tong, M. (2013). Nickel on a Macro-mesoporous Al2O3-ZrO2 Core/Shell Nanocomposite as a Novel Catalyst for CO Methanation. International Journal of Hydrogen Energy, 38(32): 13926-13937
- Ebshish, A., Yaakob, Z., Narayanan, B., Bshish, A., Wan Daud W R. (2011). The Activity of Ni-based Catalysts on Steam Reforming of Glycerol for Hydrogen Production. International Journal of Integrated Engineering, 3(1): 5-8.
- Razaei, M., Alavi, S.M., Sahebdelfar, S., Xinmei L., Qian, L., Yan Z.F. (2007). CO2-CH4 Reforming over Nickel Catalyst Supported on Mesoporous Nanocrystalline Zirconia with High Surface Area. Energy & Fuels, 21(2): 581-589.
- Zangouei, M., Moghaddam, A.Z., Arasteh, M. (2010). The Influence of Nickel Loading on Reducibility of NiO/Al2O3 Catalysts Synthesized by Sol-Gel Method. Chemical Engineering Research Bulletin, 14(2): 97-102.
- Lucredio, A.F., Jerkiewickz, G., Assaf, E.M. (2007). Nickel Catalysts Promoted with Cerium and Lanthanum to reduce Carbon Formation in Partial Oxidation of Methane Reactions. Applied Catalysis A: General, 333(1): 90-95.
- Estelle, J., Salagre, P., Cesteros, Y., Serra, M., Median, F., Sueiras, J.E. (2003). Comparative Study on the Morphology and Surface Properties of Nickel Oxide Prepared from Different Oxides. Solid State Ionics, 156: 233-243.
- Pairojpiriyakul, T., Croiset, E., Kiatkittipong, K., Kiatkittipong, W., Arpornwichanop, A., Assabumrungrat, S. (2014). Catalytic Reforming of Glycerol in Supercritical Water with Nickel-based Catalysts. International Journal of Hydrogen Energy, 39(27): 14739-14750.
- Berko, A., Majzik, Z., Kiss, A.M. (2007). Low Temperature CO Oxidation on Differently Prepared TiO2 (110) supported Au catalysts. Journal of Physics: Conference Series, 61: 110-114.
- Goula, M.A., Lemonidou, A.A., Efstathiou, A.M. (1996). Characterization of Carbonaceous Species formed during Reforming of CH4 with CO2 over Ni/CaO-Al2O3 Catalysts Studied by Various Transient Techniques. Journal of Catalysis, 161: 626-640.
- Lee, H.C., Siew, K.H., Gimbun, J., Cheng C. K. (2014). Synthesis and Characterisation of Cement Clinker-supported Nickel Catalyst for Glycerol Dry Reforming. Chemical Engineering Journal, 255: 245-256.
Last update: 2021-01-26 00:41:35
Last update: 2021-01-26 00:41:37
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)