Hydrazine and Urea Fueled-Solution Combustion Method for Bi2O3 Synthesis: Characterization of Physicochemical Properties and Photocatalytic Activity

*Yayuk Astuti scopus  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Prisca Putri Elesta  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Didik Setyo Widodo scopus  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Hendri Widiyandari scopus  -  Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Ratna Balgis scopus  -  Department of Chemical Engineering, Faculty of Engineering, Hiroshima University, Japan
Received: 24 Jul 2019; Revised: 18 Oct 2019; Accepted: 19 Oct 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

Bismuth oxide synthesis using solution combustion method fuelled by hydrazine and urea has been conducted. This study aims to examine the effect of the applied fuels, urea and hydrazine, on product characteristics and photocatalytic activity in degrading rhodamine B dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) in a nitric acid solvent. Fuel was added and then stirred. The solution formed was heated at 300 ºC for 8 hours. The product obtained was then calcined at 700 ºC for 4 hours. Bismuth oxide synthesized with urea (BO1) and hydrazine (BO2) as fuels both obtained form of yellow powder. The formation of bismuth oxide is indicated by the vibrations of the Bi–O–Bi and Bi–O groups and the crystal structure of a-Bi2O3 in both products. Photocatalytic activity test showed that BO1 has a photocatalyst activity in degrading rhodamine B higher than that of BO2 with constant values of  3.83×10-5 s-1 and 3.43×10-5 s-1, respectively. The high photocatalytic activity can be examined through several factors, such as: band gap values, crystal structure, morphology, and surface area, acquired as a result of the use of different fuels in the synthesis process. Copyright © 2020 BCREC Group. All rights reserved


Keywords: Bismuth Oxide; Solution Combustion; Photocatalysis; Rhodamine B, Fuels

Article Metrics:

  1. Xiao, X., Liu, C., Xing, C., Qian, C., Zuo, X., Nan, J., Wang, L. (2013). Facile large-scale synthesis of b-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Applied Catalysis B: Environmental, 140, 433-443.
  2. Hashimoto, T., Ohta, H., Nasu, H., Ishihara, A., (2016). Preparation and photocatalytic activity of porous Bi2O3 polymorphisms. International Journal of Hydrogen Energy, 41(18), 7388-7392.
  3. Patil, R.B., Puri, R.K., Puri, V. (2008). Effect of chopping on the properties of bismuth oxide thin films. Materials Letters, 62(2), 198-201.
  4. Clapham, P.B. (1967). Preparation and properties of sputtered bismuth oxide films. British Journal of Applied Physics, 18(3), 363-366.
  5. Dutta, D.P., Roy, M., Tyagi, A.K. (2012). Dual function of rare earth doped nano Bi2O3: white light emission and photocatalytic properties. Dalton Transactions, 41(34), 10238-10248.
  6. Joh, D.W., Park, J. H., Kim, D.Y., Yun, B.-H., Lee, K.T. (2016). High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells. Journal of Power Sources, 320, 267-273.
  7. Azad, A.M., Larose, S., Akbar, S.A. (1994). Bismuth oxide-based solid electrolytes for fuel cells. Journal of Materials Science, 29(16), 4135-4151.
  8. Bhande, S.S., Mane, R.S., Ghule, A.V., Han, S-H. (2011). A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scripta Materialia, 65(12), 1081-1084.
  9. Kazakov, S.M., Chaillout, C., Bordet, P., Capponi, J.J., Nunez-Regueiro, M., Rysak, A., Tholence, J.L., Radaelli, P.G., Putilin, S.N., Antipov, E.V. (1997). Discovery of a second family of bismuth-oxide-based superconductors. Nature, 390(6656), 148-150.
  10. Kruidhof, H., Seshan, K., van de Velde, G.M.H., de Vries, K.J., Burggraaf, A.J. (1988). Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties. Materials Research Bulletin, 23(3), 371-377.
  11. Astuti, Y., Arnelli, A., Pardoyo, P., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017). Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering and Catalysis, 12(3), 478-484.
  12. Ratova, M., Redfern, J., Verran, J., Kelly, P. J. (2018). Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Applied Catalysis B: Environmental, 239, 223-232.
  13. Hajra, P., Shyamal, S., Mandal, H., Sariket, D., Maity, A., Kundu, S., Bhattacharya, C. (2019). Synthesis of oxygen deficient bismuth oxide photocatalyst for improved photoelectrochemical applications. Electrochimica Acta, 299, 357-365.
  14. Mallahi, M., Shokuhfar, A., Vaezi, M.R., Esmaeilirad, A., Mazinani, V. (2014). Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. American Journal of Engineering Research, 3, 162-165.
  15. Wu, C., Shen, L., Huang, Q., Zhang, Y-C. (2011). Hydrothermal synthesis and characterization of Bi2O3 nanowires. Materials Letters, 65(7), 1134-1136.
  16. Aruna, S.T., Mukasyan, A.S. (2018). Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 12(3), 44-50.
  17. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties. In IOP Conference Series: Materials Science and Engineering, 107(012006), 1-7.
  18. La, J., Huang, Y., Luo, G., Lai, J., Liu, C., Chu, G. (2013). Synthesis of bismuth oxide nanoparticles by solution combustion method. Particulate Science and Technology, 31(3), 287-290.
  19. Sirota, B., Reyes-Cuellar, J., Kohli, P., Wang, L., McCarrol, M.E., Aouadi, S.M. (2012). Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering deposition. Thin Solid Films, 520(19), 6118-6123.
  20. Bohannan, E.W., Jaynes, C.C., Shumsky, M.G., Barton, J.K., Switzer, J.A. (2000). Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(III) oxide. Solid State Ionics, 131(1), 97-107.
  21. Timmaji, H.K., Chanmanee, W., De Tacconi, N.R., Rajeshwar, K. (2011). Solution combustion synthesis of BiVO4 nanoparticles: effect of combustion precursors on the photocatalytic activity. Journal of Advanced Oxidation Technologies, 14(1), 93-105.
  22. Gilabert Albiol, J., Palacios, M. D., Sanz-Solana, V., Mestre, S. (2017). Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments. Boletín de la Sociedad Española de Cerámica y Vidrio, 56(5), 215-225.
  23. Rasouli, S., Oshani, F., Hashemi, S. (2011). Effect of various fuels on structure and photo-catalytic activity of nanocrystalline TiO2 prepared by microwave-assisted combustion method. Progress in Color, Colorants and Coatings, 4 (2011), 85-94.
  24. Raveendra, R., Prashanth, P., Nagabhushana, B. (2016). Study on the effect of fuels on phase formation and morphology of combustion derived a-Al2O3 and NiO nanomaterials. Advanced Materials Letters, 7, 216-220.
  25. Patel, V.K., Ganguli, A., Kant, R., Bhattacharya, S. (2015). Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Advances, 5(20), 14967-14973.
  26. Bolaghi, Z.K., Hasheminiasari, M., Masoudpanah, S. (2018). Solution combustion synthesis of ZnO powders using mixture of fuels in closed system. Ceramics International, 44(11), 12684-12690.
  27. Canillas, M., Rivero, R., Garcia-Carrodeguas, R., Barba, F., Rodriguez, M.A. (2017). Processing of hydroxyapatite obtained by combustion synthesis. Boletín de la Sociedad Española de Cerámica y Vidrio, 56(5), 237-242.
  28. Eastaugh, N., Walsh, V., Chaplin, T., Siddal, R. (2008). Pigment compendium: a dictionary and optical microscopy of historical pigments. London, Routledge.
  29. Pimputkar, S., Speck, J.S., DenBaars, S.P., Nakamura, S. (2009). Prospects for LED lighting. Nature Photonics, 3(4), 180-182.
  30. Bartonickova, E., Cihlar, J., Castkova, K. (2007). Microwave-assisted synthesis of bismuth oxide. Processing and Application of Ceramics, 1(1-2), 29-33.
  31. Diaconeasa, Z., Barbu-Tudoran, L., Coman, C., Leopold, L., Mesaros, A., Pop, O., Rugină, D., Ştefan, R., Tăbăran, F., Tripon, S. (2015). Cerium oxide nanoparticles and its cytotoxicity human lung cancer cells. Romanian Biotechnological Letters, 20(4), 10679-10687.
  32. Bandyopadhyay, S., Dutta, A. (2017). Thermal, optical and dielectric properties of phase stabilized d–Dy-Bi2O3 ionic conductors. Journal of Physics and Chemistry of Solids, 102, 12-20.
  33. Hong-Yan, D., Wei-Chang, H., Huai-Zhe, X. (2011). A Transition Phase in the Transformation from a-, b- and ∊- to d-Bismuth Oxide. Chinese Physics Letters, 28(5), 056101 (1-4).
  34. Huang, C., Hu, J., Fan, W., Wu, X., Qiu, X. (2015). Porous cubic bismuth oxide nanospheres: a facile synthesis and their conversion to bismuth during the reduction of nitrobenzenes. Chemical Engineering Science, 131, 155-161.
  35. Iyyapushpam, S., Nishanthi, S., Padiyan, D.P. (2013). Photocatalytic degradation of methyl orange using a-Bi2O3 prepared without surfactant. Journal of Alloys and Compounds, 563, 104-107.
  36. Wang, Q., Hui, J., Yang, L., Huang, H., Cai, Y., Yin, S., Ding, Y. (2014). Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation. Applied Surface Science, 289, 224-229.
  37. Li, H., Sun, B., Xu, Y., Qiao, P., Wu, J., Pan, K., Tian, G., Wang, L., Zhou, W. (2018). Surface defect-mediated efficient electron-hole separation in hierarchical flower-like bismuth molybdate hollow spheres for enhanced visible-light-driven photocatalytic performance. Journal of colloid and interface science, 531, 664-671.
  38. Saison, T., Chemin, N., Chanéac, C., Durupthy, O., Ruaux, V., Mariey, L., Maugé, F., Beaunier, P., Jolivet, J-P. (2011). Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. The Journal of Physical Chemistry C, 115(13), 5657-5666.
  39. Sood, S., Umar, A., Mehta, S. K., Kansal, S. K. (2015). a-Bi2O3 nanorods: an efficient sunlight active photocatalyst for degradation of Rhodamine B and 2, 4, 6-trichlorophenol. Ceramics International, 41(3), 3355-3364.

No citation recorded.