Soluble Colloidal Manganese Dioxide: Formation, Characterization and Application in Oxidative Kinetic Study of Ciprofloxacin

Gajala Tazwar orcid  -  Department of Chemistry, Janki Devi Bajaj Government Girls College, India
*Vijay Devra orcid  -  Department of Chemistry, Janki Devi Bajaj Government Girls College, India
Received: 18 Jul 2019; Revised: 27 Aug 2019; Accepted: 13 Sep 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Soluble colloidal manganese dioxide was formed by reduction of potassium permanganate with sodium thiosulphate in neutral aqueous medium at 25 ºC. The obtained nano-sized colloidal manganese dioxide was found to be dark reddish-brown in color and stable for several months. The formation of manganese dioxide was confirmed by UV-visible spectrophotometer and determination of oxidation state of Mn species in manganese dioxide. The effect of different concentration of sodium thiosulphate on the formation of manganese dioxide was also studied. The nano-sized colloid manganese dioxide was characterized by transmission electron microscopy and Fourier transform infrared spectrophotometer. The formed soluble colloidal manganese dioxide was used as an oxidant in oxidation of ciprofloxacin in perchloric acid medium at 35 ºC. The reaction was first-order concerning to concentration of manganese dioxide and hydrogen ion but fractional order with ciprofloxacin. The results suggest formation of complex between ciprofloxacin and manganese dioxide. The oxidation products were also identified based on stoichiometric and characterization results. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords
Soluble colloidal manganese dioxide; Ciprofloxacin; Characterization; Kinetics; Oxidation.

Article Metrics:

  1. Fatiadi, A.J. (1986). The oxidation of organic compounds by active manganese dioxide. Org. Synth. Oxd. Met. Compd. 119-260.
  2. Khan, Z., Raju, R., Mohd, A., Kabir-Ud-Din, K. (2004). Oxidation of lactic acid by water soluble (colloidal) manganese dioxide. Int. J. Chem. Kinet., 36, 359-366.
  3. Zhang, H., Chen, W.R., Huang, H.C. (2008). Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Environ Sci Technol, 42: 5548-5554.
  4. Sharma, T.C., Lal, A., Saksena, V. (1976). Oxidation of flavanone hydrazones with manganese dioxide. Bull. Chem. Soc. Jpn., 49, 2881-2882.
  5. Basak, B., Malati, M.A. (1977). Characterisation of manganese dioxides-IV. The oxidation of chromium(III) ions by manganese dioxides. J. Inorg. Nucl. Chem. 39, 1081-1084.
  6. Kienzle, F. (1983). A facile synthesis of 1, 4-dihydro-1- alkyl-2H-3,1-benzoxazines and related compounds. Tetrahedron Lett., 24, 2213-2216.
  7. Mata-Perez, F., Perez-Benito, J.F. (1985). Identification of the product from the reduction of permanganate ion by trimethylamine in aqueous phosphate buffers. Can. J. Chem., 63, 988-992.
  8. Perez-Benito, J.F., Arias, C. (1992). A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid. J. Colloid Interface Sci., 149, 92-97.
  9. Perez-Benito, J.F., Ariasm C., Amat, E. (1996).A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. J. Colloid Interface Sci., 177, 228-297.
  10. Perez-Benito, J.F., Brillas, E., Pouplana, R. (1989). Identification of a soluble form of colloidal manganese (IV). Inorg. Chem., 28, 390-392.
  11. Altaf, M., Jaganyi, D. (2014). Kinetics of the degradation of l-cysteine at freshly prepared nano-sized MnO2 surfaces in the absence and presence of TX-100. J. Solution Chem., 43, 269-282.
  12. Khan, Z., Raju, Akram, M., Kabir-Ud-Din, K. (2004). Oxidation of lactic acid by water soluble (colloidal) manganese dioxide. Int. J. Chem. Kinet., 36, 359-366.
  13. Saeed, M., Ilyas, M., Siddique, M., Ahmad, A. (2013). Oxidative degradation of oxalic acid in aqueous medium using manganese oxide as catalyst at ambient temperature and pressure. Arab. J. Sci. Eng., 38, 1739-1748.
  14. Freeman, F., Chang, L.Y., Kappos, J.C., Sumarta, L. (1987). Permanganate ion oxidations. 18. Kinetics and mechanism of the oxidation of (E)- 3-(2-pyridinyl)-, (E)-3-(3-pyridinyl)-and (E)-3-(4-pyridinyl)-2- propenoates. J. Organo Met. Chem., 52, 1460-1464.
  15. Kabir-ud-Din, K., Altaf, M., Akram, M. (2008). The kinetics of oxidation of L-tryptophan by water-soluble colloidal manganese dioxide. J. Dispers. Sci. Technol., 29, 809-816.
  16. Mata-Perez, F., Perez-Benito, J.F. (1986). Mn(IV) Stabilized in Solution by Phosphate Ions. A Spectrophotometric Evidence of its Colloidal Nature. J. Phys. Chem. Leipzig, 267, 120-124.
  17. Qamruzzaman, Q., Nasar, A. (2014). Degradation of tricyclazole by colloidal manganese dioxide in the absence and presence of surfactants. J. Ind. Eng. Chem., 20, 897-902.
  18. Klausen, J., Haderlein, S.B., Schwarzenbach, R.P. (1997). Oxidation of substituted anilines by aqueous MnO2: effect of co-solutes on initial and quasi-steady-state kinetics. Environ. Sci. Technol., 31, 2642-2649.
  19. McArdell, C.S., Stone, A.T., Tian, J. (1998). Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIIOOH (manganite). Environ. Sci. Technol., 32, 2923-2930.
  20. Wang, D., Shin, J.Y., Cheney, M.A., SpositoGand Spiro, T.G. (1999). Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation. Environ. Sci. Technol., 33, 3160-3165.
  21. Li, F., Liu, C., Liang, C., Li, X., Zhang, L. (2008). The oxidative degradation of 2-mercaptobenzothiazole at the interface of b-MnO2 and water. J. Hazard. Mater., 154, 1098-1105.
  22. Li, H., Lee, L.S., Schulze, D.G., Guest, C.A. (2003). Role of soil manganese in the oxidation of aromatic amines. Environ. Sci. Technol. 37, 2686-2693.
  23. Ukrainczyk, L., McBride, M.B. (1993). Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: reaction products. Environ. Toxicol. Chem. 12, 2015-2022.
  24. Akram, M., Altaf, M., Kabir-ud-din, K. (2007). Oxidation of aspartic acid by water soluble colloidal MnO2 in absences and presence of ionic and nonionic surfactants. Indian J. Chem., 46, 1427-1431.
  25. Kabir-Ud-Din, K., Fatma, W., Khan, Z. (2004). Effect of surfactants on the oxidation of oxalic acid by soluble colloidal MnO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234, 159-164.
  26. Kabir-Ud-Din, K., Iqubal, S.M.S. (2010). Kinetics of the reduction of water soluble colloidal MnO2 by mandelic acid in the absence and presence of non-ionic surfactant Triton X-100. Colloid Journal, 72, 195-204.
  27. Khan, Z., Kumar, P., Kabir-Ud-Din, K. (2004). Kinetics and mechanism of the reduction of colloidal manganese dioxide by D-fructose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248, 25-31.
  28. Kabir-Ud-Din, K., Zaidi, N.H., Akram, M., Khan, Z. (2006). Mechanism of the oxidation of D-glucose onto colloidal MnO2 surface in the absence and presence of TX-100 micelles. Colloid and Polymer Science, 284, 387-1393.
  29. Herszage, J., Afonso, M.D.S., Luther, G. (2003). Oxidation of cysteine and glutathione by soluble polymeric MnO2. Environ. Sci. Technol., 37, 3332-3338.
  30. Diab, N., Abu-Shqair, I., Al-Subu, M., Salim, R. (2013). Kinetics of Oxidation of Some Fluoroquinolones by Hexacyanoferrate (III) in Alkaline Medium. International Journal of Chemistry, 34, 1388-1394.
  31. Tazwar, G., Jain, A., Mittal, N., Devra, V. (2017). Oxidation of ciprofloxacin by hexacyanoferrate(III) in the presence of Cu(II) as a catalyst: A kinetic study. Int. J. Chem. Kinet., 49(7), 534-542.
  32. Wang, P., Yi-Liang, H., Ching-Hua, C.H. (2010). Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation. Water Res., 44, 5989-5998.
  33. Yang, B., Kookana, R.S., Williams, M., Ying, G.G., Du, J., Doan, H., Kumar, A. (2016). Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation. J. Hazard. Mater., 320, 296-303.
  34. Zhou, Z., Jiang, J-Q. (2015). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere, 119, S95-S100.
  35. Zhang, H., Huang, C.H. (2005). Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide. Environ. Sci. Technol., 39, 593-601.
  36. Thabaj, K.A., Kulkarni, S.D., Chimatadar, S.A., Nandibewoor, S.T. (2007). Oxidative transformation of ciprofloxacin by alkaline permanganate – A kinetic and mechanistic study. Polyhydrone, 26, 4877-4885.
  37. Xiao, X., Sun, S-P., McBride, M.B., Lemley, A.T. (2013). Degradation of ciprofloxacin by cryptomelane-type manganese(III/IV) oxides. Environ. Sci. Pollut. Res., 20, 10-21.
  38. Hu, L., Martin, H.M., Stratlumann, T.J. (2010). Oxidation of antibiotics during water treatment with potassium permanganate. Environ. Sci. Technol., 44, 6416-6422.
  39. Hu, L., Stemig, A.M., Wammer, K.H., Strathmann, T.J. (2011). Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation. Environ. Sci. Technol., 45, 3635-3642.
  40. Chen, G., Zhao, L., Dong, Y.H. (2011). Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide. J. Hazard. Mater., 193, 128-138.
  41. Singh, A.K., Sen, N., Chatterjee, S.K. (2016). Oxidative degradation of norfloxacin by water soluble colloidal MnO2 in the presence of cationic surfactant. Indian J of Chem, 55A: 1059-1067.
  42. Tazwar, G., Jain, A., Devra, V. (2017). Oxidative degradation of levofloxacin by water-soluble manganese dioxide in aqueous acidic medium: a kinetic study. Chem. Pap. 71, 1749-1758. doi:10.1007/s11696-017-0167-y
  43. Li, Y., Wei, D., Du, Y. (2015). Oxidative transformation of levofloxacin by MnO2: Products, pathways and toxicity assessment. Chemosphere, 119, 282-288.
  44. Zhang, H.C., Haung, C.H. (2003). Oxidative transformation of triclosan and chlorophene by manganese oxide. Environ. Sci. Technol., 37, 2421-2430.
  45. Huang, Y., Lin, Y., Li, W. (2013). Controllable syntheses of α- and δ-MnO2 as cathode catalysts for zinc-air battery. Electrochim. Acta, 99, 161-165.
  46. Islam, M.A., Rahman, M.M. (2013). Soluble colloidal manganese dioxide: formation, identification and prospects of application. Colloidal Journal, 75, 591-595.
  47. Islam, M.M., Rahman, M.M. (2015). Dissolution kinetics of colloidal manganese dioxide in aqueous hydrochloric acid at 298 k. Russian Journal of Physical Chemistry A, 89, 706-709.
  48. Akram, M., Altaf, M., Kabir-Ud-Din, K. (2011). Oxidative degradation of dipeptide (glycyl-glycine) by water soluble colloidal manganese dioxide in the aqueous and micellar media. Colloids Surf. B, 82, 217-223.
  49. Zhang, H.C., Haung, C.H. (2005). Oxidative transformation of Fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ. Sci. Technol., 39, 4474-4483. doi: 10.1021/es048166d
  50. Laidler, K.J. (2004). Chemical Kinetics. Pearson Education, (Singapore) Pte. Ltd, Indian Branch, Delhi, India, 3rd edn.
  51. Jain, A., Jain, S., Devra, V. (2015). Kinetics and mechanism of permanganate oxidation of ciprofloxacin in aqueous sulphuric acid medium. International Journal of Pharmaceutical Sciences and Drug Research, 7, 205-210.