Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production

License URL: http://creativecommons.org/licenses/by-sa/4.0

This paper is devoted to the production of second generation biodiesel via catalytic hydrodeoxygenation of fatty acids. Pd/C catalysts with different metal loading were used. The palladium catalysts were characterized using low-temperature nitrogen physisorption and X-ray photoelectron spectroscopy. It was revealed that the most active and selective catalyst was 1%-Pd/C which allowed reaching up 97.5% of selectivity (regarding to n-heptadecane) at 100% conversion of substrate. Moreover, the chosen catalyst is more preferable according to lower metal content that leads the decrease of the process cost. The analysis of the catalysts showed that 1%-Pd/C had the highest specific surface area compared with 5%-Pd/C. Copyright © 2016 BCREC GROUP. All rights reserved
Received: 31st July 2015; Revised: 9th December 2015; Accepted: 30th December 2015
How to Cite: Stepacheva, A.A., Sapunov, V.N., Sulman, E.M., Nikoshvili, L.Z., Sulman, M.G., Sidorov, A.I., Demidenko, G.N., Matveeva, V.G. (2016). Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 125-132 (doi:10.9767/bcrec.11.2.538.125-132)
Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.538.125-132
Article Metrics: (click on the button below to see citations in Scopus)
Article Metrics:
- Kalnes., T., Marker, T., Shonnard, D.R. (2007). Green diesel: a second generation biofuels. International Journal of Chemical Reactor Engineering, 5: 748-750.
- Sooknoi, T., Danuthai, T., Lobban, L.L., Mallinson, R.G., Resasco, D.E. (2008). Deoxygenation of Methyl Esters over CsNaX. Journal of Catalysis, 258: 199-200.
- Snäre, M., Kubičkova, I., Mäki-Arvela, P., Eränen, K., Murzin, D.Yu. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiese. Industrial & Engineering Chemistry Research, 45(16): 5708-5719.
- Li, L., Coppola, E., Rine, J., Miller, J.L., Walker, D. (2010). Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels, 24: 1305-1315.
- Holmgren, J., Gosling, C., Couch, K., Kalnes, T., Marker, T., McCall, M., Marinangeli, R. (2007). Biorenewable integration in refineries is evaluated along with work to commercially produce green diesel. Petroleum Technology Quarterly, 3: 119-125.
- Immer, J.G., Lamb, H.H. (2010). Fed - Batch Catalytic Deoxygenation of Free Fatty Acids. Energy & Fuels, 24: 5291-5299.
- Morgan, T., Grubb, D., Santillan-Jimenez, E., Crocker, M. (2010). Conversion of triglycerides to hydrocarbons over supported metal catalysts. Topics in Catalysis, 53: 820-829.
- Do, Ph.T., Chiappero, M., Lobban, L.L., Resasco, D.E. (2009). Catalytic Deoxygenation of Methyl-Octanoate and Methyl-Stearate on Pt/Al2O3. Catalysis Letters, 130: 9-18.
- Rar, M., Kovacs, S., Kallo, D., Hancsok, J. (2010). Fuel Purpose Hydrotreating of Sunflower Oil on CoMo/Al2O3 Catalyst. Bioresourse Technology, 101: 9287-9293.
- Hoang, T.Q., Zhu, X., Danuthai, T., Lobban L.L., Resasco, D.E., Mallinson, R.G. (2010). Conversion of Glycerol to Alkyl-aromatics over Zeolites. Energy Fuels. 24: 3804-3809.
- Danuthai, T., Jongpatiwut, S., Rirksomboon, Th., Osuwan, S., Resasco, D.E. (2009). Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst. Applied Catalysis A: General, 361: 99-105.
- Dundich, V.O., Khromova, S.A., Ermakov, D.Yu., Lebedev, M.Yu., Novopashina, V.M., Sister, V.G., Yakimchuk, A.I., Yakovlev, V.A. (2010). Nickel catalysts for the hydrodeoxygenation of biodiesel. Kinetics and Catalysis, 51(5): 704-709.
- Gregg, S. J., Sing, Kenneth S.W. (1982). Adsorption, Surface Area, & Porosity, Second Edition. Hardcover.
- Donohue, M. (2010). A New Classification of Adsorption Isotherms. Citing Internet sources URL http://www.nigelworks.com/mdd/.../NewClass.pdf
- NIST X-ray Photoelectron Spectroscopy Database, Version 3.5. (National Institute of Standards and Technology, Gaithersburg, 2003). Citing Internet sources URL http://srdata.nist.gov/xps/
- Wu, T., Kaden, W.E., Kunkel, W.A., Anderson, S.L. (2009). Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surface Science, 603: 2764-2770.
- Penner, S., Bera, P., Pedersen, S., Ngo, L.T, Harris, J.J.W., Charles, T. (2006). Campbell. Interactions of O2 with Pd Nanoparticles on α-Al2O3(0001) at Low and High O2 Pressures. Journal of Physical Chemistry B, 110: 24577-24584.
Last update: 2021-01-26 09:16:56
Last update: 2021-01-26 09:16:57
-
Catalytic decarboxylation of fatty acids to hydrocarbons over non-noble metal catalysts: the state of the art
Kiméné A.. Journal of Chemical Technology and Biotechnology, 94 (3), 2019. doi: 10.1002/jctb.5776 -
Hydroconversion of residual fatty acids on a molybdenum-copper catalyst
Ion D.. Revista de Chimie, 70 (12), 2019. doi: 10.37358/RC.19.12.7744 -
Development of Technologies and Prospects for the Introduction of Aviation Biofuels
GAEVA T.N.. Biotekhnologiya, 36 (5), 2020. doi: 10.21519/0234-2758-2020-36-5-13-30 -
Green diesel production by solvent-free deoxygenation of oleic acid over nickel phosphide bifunctional catalysts: Effect of the support
de Oliveira Camargo M.. Fuel, 127 , 2020. doi: 10.1016/j.fuel.2020.118719 -
Deoxygenation of vegetable oils for the production of renewable diesel: Improved aerogel based catalysts
Pimenta J.L.C.W.. Fuel, 127 , 2021. doi: 10.1016/j.fuel.2020.119979 -
Hydrodeoxygenation of residual fatty acids fraction over Ni-Mo /γ-Al
Ion D.. Revista de Chimie, 71 (3), 2020. doi: 10.37358/RC.20.3.80112 O3 catalyst -
A novel kinetic model applied to heterogeneous fatty acid deoxygenation
Castagnari Willimann Pimenta J.L.. Chemical Engineering Science, 127 , 2021. doi: 10.1016/j.ces.2020.116192 -
Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio
Zheng Y.. Renewable Energy, 127 , 2020. doi: 10.1016/j.renene.2020.03.058 -
Biofuel preparation from waste chicken fat using coal fly ash as a catalyst: Optimization and kinetics study in a batch reactor
Suchamalawong P.. Journal of Environmental Chemical Engineering, 7 (3), 2019. doi: 10.1016/j.jece.2019.103155 -
Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective
Why E.S.K.. Energy Conversion and Management, 127 , 2019. doi: 10.1016/j.enconman.2019.112015
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)