Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production

*Аntonina A. Stepacheva  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Valentin N. Sapunov  -  D. Mendeleyev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow,, Russian Federation
Esther M. Sulman M. Sulman  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,
Linda Zh. Nikoshvili  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Mikhail G. Sulman  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Alexander I. Sidorov  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Galina N. Demidenko  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Valentina G. G. Matveeva  -  Tver Technical University, Department of Biotechnology and Chemistry, A. Nikitina str., 22, Tver 170026,, Russian Federation
Received: 13 Jun 2016; Published: 20 Aug 2016.
Open Access Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

This paper is devoted to the production of second generation biodiesel via catalytic hydrodeoxygenation of fatty acids. Pd/C catalysts with different metal loading were used. The palladium catalysts were characterized using low-temperature nitrogen physisorption and X-ray photoelectron spectroscopy. It was revealed that the most active and selective catalyst was 1%-Pd/C which allowed reaching up 97.5% of selectivity (regarding to n-heptadecane) at 100% conversion of substrate. Moreover, the chosen catalyst is more preferable according to lower metal content that leads the decrease of the process cost. The analysis of the catalysts showed that 1%-Pd/C had the highest specific surface area compared with 5%-Pd/C. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 31st July 2015; Revised: 9th December 2015; Accepted: 30th December 2015

How to Cite: Stepacheva, A.A., Sapunov, V.N., Sulman, E.M., Nikoshvili, L.Z., Sulman, M.G., Sidorov, A.I., Demidenko, G.N., Matveeva, V.G. (2016). Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 125-132 (doi:10.9767/bcrec.11.2.538.125-132)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.538.125-132

Article Metrics: (click on the button below to see citations in Scopus)

cited by count 

Keywords: Fatty Acids; Catalytic Hydrodeoxygenation; Palladium Catalyst; Biodiesel

Article Metrics:

  1. Kalnes., T., Marker, T., Shonnard, D.R. (2007). Green diesel: a second generation biofuels. International Journal of Chemical Reactor Engineering, 5: 748-750.
  2. Sooknoi, T., Danuthai, T., Lobban, L.L., Mallinson, R.G., Resasco, D.E. (2008). Deoxygenation of Methyl Esters over CsNaX. Journal of Catalysis, 258: 199-200.
  3. Snäre, M., Kubičkova, I., Mäki-Arvela, P., Eränen, K., Murzin, D.Yu. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiese. Industrial & Engineering Chemistry Research, 45(16): 5708-5719.
  4. Li, L., Coppola, E., Rine, J., Miller, J.L., Walker, D. (2010). Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels, 24: 1305-1315.
  5. Holmgren, J., Gosling, C., Couch, K., Kalnes, T., Marker, T., McCall, M., Marinangeli, R. (2007). Biorenewable integration in refineries is evaluated along with work to commercially produce green diesel. Petroleum Technology Quarterly, 3: 119-125.
  6. Immer, J.G., Lamb, H.H. (2010). Fed - Batch Catalytic Deoxygenation of Free Fatty Acids. Energy & Fuels, 24: 5291-5299.
  7. Morgan, T., Grubb, D., Santillan-Jimenez, E., Crocker, M. (2010). Conversion of triglycerides to hydrocarbons over supported metal catalysts. Topics in Catalysis, 53: 820-829.
  8. Do, Ph.T., Chiappero, M., Lobban, L.L., Resasco, D.E. (2009). Catalytic Deoxygenation of Methyl-Octanoate and Methyl-Stearate on Pt/Al2O3. Catalysis Letters, 130: 9-18.
  9. Rar, M., Kovacs, S., Kallo, D., Hancsok, J. (2010). Fuel Purpose Hydrotreating of Sunflower Oil on CoMo/Al2O3 Catalyst. Bioresourse Technology, 101: 9287-9293.
  10. Hoang, T.Q., Zhu, X., Danuthai, T., Lobban L.L., Resasco, D.E., Mallinson, R.G. (2010). Conversion of Glycerol to Alkyl-aromatics over Zeolites. Energy Fuels. 24: 3804-3809.
  11. Danuthai, T., Jongpatiwut, S., Rirksomboon, Th., Osuwan, S., Resasco, D.E. (2009). Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst. Applied Catalysis A: General, 361: 99-105.
  12. Dundich, V.O., Khromova, S.A., Ermakov, D.Yu., Lebedev, M.Yu., Novopashina, V.M., Sister, V.G., Yakimchuk, A.I., Yakovlev, V.A. (2010). Nickel catalysts for the hydrodeoxygenation of biodiesel. Kinetics and Catalysis, 51(5): 704-709.
  13. Gregg, S. J., Sing, Kenneth S.W. (1982). Adsorption, Surface Area, & Porosity, Second Edition. Hardcover.
  14. Donohue, M. (2010). A New Classification of Adsorption Isotherms. Citing Internet sources URL http://www.nigelworks.com/mdd/.../NewClass.pdf
  15. NIST X-ray Photoelectron Spectroscopy Database, Version 3.5. (National Institute of Standards and Technology, Gaithersburg, 2003). Citing Internet sources URL http://srdata.nist.gov/xps/
  16. Wu, T., Kaden, W.E., Kunkel, W.A., Anderson, S.L. (2009). Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surface Science, 603: 2764-2770.
  17. Penner, S., Bera, P., Pedersen, S., Ngo, L.T, Harris, J.J.W., Charles, T. (2006). Campbell. Interactions of O2 with Pd Nanoparticles on α-Al2O3(0001) at Low and High O2 Pressures. Journal of Physical Chemistry B, 110: 24577-24584.

Last update: 2021-01-26 09:16:56

No citation recorded.

Last update: 2021-01-26 09:16:57

  1. Catalytic decarboxylation of fatty acids to hydrocarbons over non-noble metal catalysts: the state of the art

    Kiméné A.. Journal of Chemical Technology and Biotechnology, 94 (3), 2019. doi: 10.1002/jctb.5776
  2. Hydroconversion of residual fatty acids on a molybdenum-copper catalyst

    Ion D.. Revista de Chimie, 70 (12), 2019. doi: 10.37358/RC.19.12.7744
  3. Development of Technologies and Prospects for the Introduction of Aviation Biofuels

    GAEVA T.N.. Biotekhnologiya, 36 (5), 2020. doi: 10.21519/0234-2758-2020-36-5-13-30
  4. Green diesel production by solvent-free deoxygenation of oleic acid over nickel phosphide bifunctional catalysts: Effect of the support

    de Oliveira Camargo M.. Fuel, 127 , 2020. doi: 10.1016/j.fuel.2020.118719
  5. Deoxygenation of vegetable oils for the production of renewable diesel: Improved aerogel based catalysts

    Pimenta J.L.C.W.. Fuel, 127 , 2021. doi: 10.1016/j.fuel.2020.119979
  6. Hydrodeoxygenation of residual fatty acids fraction over Ni-Mo /γ-Al2O3 catalyst

    Ion D.. Revista de Chimie, 71 (3), 2020. doi: 10.37358/RC.20.3.8011
  7. A novel kinetic model applied to heterogeneous fatty acid deoxygenation

    Castagnari Willimann Pimenta J.L.. Chemical Engineering Science, 127 , 2021. doi: 10.1016/j.ces.2020.116192
  8. Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio

    Zheng Y.. Renewable Energy, 127 , 2020. doi: 10.1016/j.renene.2020.03.058
  9. Biofuel preparation from waste chicken fat using coal fly ash as a catalyst: Optimization and kinetics study in a batch reactor

    Suchamalawong P.. Journal of Environmental Chemical Engineering, 7 (3), 2019. doi: 10.1016/j.jece.2019.103155
  10. Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective

    Why E.S.K.. Energy Conversion and Management, 127 , 2019. doi: 10.1016/j.enconman.2019.112015