Enhancing Enzymatic Digestibility of Coconut Husk using Nitrogen-assisted Subcritical Water for Sugar Production

Maktum Muharja  -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Nur Fadhilah  -  Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Indonesia
Tantular Nurtono  -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
*Arief Widjaja scopus  -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Received: 1 Jul 2019; Revised: 27 Sep 2019; Accepted: 27 Sep 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

Coconut husk (CCH) as an abundant agricultural waste in Indonesia has the potential to be utilized for sugar production, which is the intermediate product of biofuel. In this study, subcritical water (SCW) assisted by nitrogen (N2) was developed to enhance the enzymatic hydrolysis of CCH. SCW process was optimized by varying the operation condition: the pressure of 60-100 bar, the temperature of 150-190 °C, and the time of 20-60 min. The SCW-treated solid was subsequently hydrolyzed by utilizing a mixture of commercial cellulase and xylanase enzymes. The result shows that the optimum total sugar yield was obtained under the mild condition of SCW treatment, resulting in the sugar of 15.67 % and 10.31 % gained after SCW and enzymatic hydrolysis process, respectively. SEM and FTIR analysis of SCW-treated solid exhibited the deformation of lignin and solubilization of cellulose and hemicellulose, while XRD and TGA revealed an increase of the amount of crystalline part in the solid residue. The use of N2 in SCW treatment combined with enzymatic hydrolysis in this study suggested that the method can be considered economically for biofuel production from CCH waste in commercial scale. Copyright © 2020 BCREC Group. All rights reserved


Keywords: coconut husk; subcritical water; enzymatic hydrolysis; sugar production

Article Metrics:

  1. Park, J., Riaz, A., Insyani, R., Kim, J. (2018). Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel, 217, 202–210.
  2. Guo, H., Chang, Y., Lee, D. J. (2018). Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresource Technology, 252, 198–215.
  3. Widjaja, A., Agnesty, S. Y., Sangian, H. F., Gunawan, S. (2015). Application of ionic liquid [DMIM]DMP pretreatment in the hydrolysis of sugarcane Bagasse for biofuel production. Bulletin of Chemical Reaction Engineering and Catalysis, 10(1), 70–77.
  4. Prado, J. M., Forster-Carneiro, T., Rostagno, M. A., Follegatti-Romero, L. A., Maugeri Filho, F., Meireles, M. A. A. (2014). Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. Journal of Supercritical Fluids, 89, 89–98.
  5. Agustriyanto, R., Fatmawati, A., Liasari, Y. (2012). Study of enzymatic hydrolysis of dilute acid pretreated coconut husk. Bulletin of Chemical Reaction Engineering and Catalysis, 7(2), 137–141.
  6. Sangian, H. F., Kristian, J., Rahma, S., Dewi, H. K., Puspasari, D. A., Agnesty, S. Y., Gunawan, S., Widjaja, A. (2015). Preparation of reducing sugar hydrolyzed from high-lignin coconut coir dust pretreated by the recycled ionic liquid [mmim][dmp] and combination with alkaline. Bulletin of Chemical Reaction Engineering and Catalysis, 10(1): 8–22.
  7. Muharja, M., Umam, D. K., Pertiwi, D., Zuhdan, J., Nurtono, T., Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274, 89–96.
  8. Kumar, M., Olajire Oyedun, A., Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742–1770.
  9. Sekoai, P. T., Yoro, K. O., Bodunrin, M. O., Ayeni, A. O., Daramola, M. O. (2018). Integrated system approach to dark fermentative biohydrogen production for enhanced yield, energy efficiency and substrate recovery. Reviews in Environmental Science and Bio/Technology, 17(3), 501–529.
  10. Sivagurunathan, P., Kumar, G., Mudhoo, A., Rene, E. R., Saratale, G. D., Kobayashi, T., Xu, K., Kim, S.H., Kim, D. H. (2017). Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renewable and Sustainable Energy Reviews, 77, 28–42.
  11. Wang, P., Chen, Y. M., Wang, Y., Lee, Y. Y., Zong, W., Taylor, S., McDonald, T., Wang, Y. (2019). Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy, 236, 551–559.
  12. Matsakas, L., Raghavendran, V., Yakimenko, O., Persson, G., Olsson, E., Rova, U., Olsson, L., Christakopoulos, P. (2019). Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology, 273, 521–528.
  13. Gonzales, R. R., Kim, S.-H. (2017). Dark fermentative hydrogen production following the sequential dilute acid pretreatment and enzymatic saccharification of rice husk. International Journal of Hydrogen Energy. 42, 27577-27583.
  14. Sabanci, K., Buyukkileci, A. O. (2018). Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Bioresource Technology, 261, 158–165.
  15. Sarkar, N., Ghosh, S. K., Bannerjee, S., Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27.
  16. Ahmad, F., Silva, E. L., Varesche, M. B. A. (2018). Hydrothermal processing of biomass for anaerobic digestion – A review. Renewable and Sustainable Energy Reviews, 98, 108–124.
  17. Ashraf, M. T., Schmidt, J. E. (2018). Process simulation and economic assessment of hydrothermal pretreatment and enzymatic hydrolysis of multi-feedstock lignocellulose – Separate vs combined processing. Bioresource Technology, 249, 835–843.
  18. Okajima, I., Sako, T. (2014). Energy conversion of biomass with supercritical and subcritical water using large-scale plants. Journal of Bioscience and Bioengineering, 117(1), 1–9.
  19. Jönsson, L. J., Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.
  20. Martín, C., Wu, G., Wang, Z., Stagge, S., Jönsson, L. J. (2018). Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresource Technology, 262, 242–250.
  21. Mayanga-Torres, P. C., Lachos-Perez, D., Rezende, C. A., Prado, J. M., Ma, Z., Tompsett, G. T., Timko, M. T., Forster-Carneiro, T. (2017). Valorization of coffee industry residues by subcritical water hydrolysis: Recovery of sugars and phenolic compounds. Journal of Supercritical Fluids, 120, 75–85.
  22. Abaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V, Zabot, G. L., Mazutti, M. A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272, 510–520.
  23. Kubota, A. M., Kalnins, R., Overton, T. W. (2018). A biorefinery approach for fractionation of Miscanthus lignocellulose using subcritical water extraction and a modified organosolv process. Biomass and Bioenergy, 111, 52–59.
  24. Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J., Carrère, H. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures ? A comprehensive review. Biotechnology Advances, 32(5), 934–951.
  25. Batista, G., Souza, R. B. A., Pratto, B., dos Santos-Rocha, M. S. R., Cruz, A. J. G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327.
  26. Prado, J. M., Vardanega, R., Nogueira, G. C., Forster-Carneiro, T., Rostagno, M. A., Maugeri Filho, F., Meireles, M. A. A. (2017). Valorization of Residual Biomasses from the Agri-Food Industry by Subcritical Water Hydrolysis Assisted by CO2. Energy and Fuels, 31(3), 2838–2846.
  27. Yang, T., Wang, J., Li, B., Kai, X., Li, R. (2017). Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: Differences between subcritical water and supercritical ethanol. Bioresource Technology, 229, 143–151.
  28. Öztürk, I., Irmak, S., Hesenov, A., Erbatur, O. (2010). Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass and Bioenergy, 34(11), 1578–1585.
  29. Muharja, M., Junianti, F., Ranggina, D., Nurtono, T., Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249, 268–275.
  30. Muharja, M., Junianti, F., Nurtono, T., Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840(1), 30004.
  31. Datta, R. (1981). Acidogenic fermentation of corn stover. Biotechnology and Bioengineering, 23(1), 61–77.
  32. Jiang, F., Hsieh, Y.-L. (2014). Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. Journal of Materials Chemistry A, 2(2), 350–359.
  33. Sangian, H. F., Widjaja, A. (2017). Effect of Pretreatment Method on Structural Changes of Coconut Coir Dust. BioResources, 12(4), 8030–8046.
  34. Sangian, H. F., Ranggina, D., Ginting, G. M., Purba, A. A., Gunawan, S., Widjaja, A. (2015). Study of the preparation of sugar from high-lignin lignocellulose applying subcritical water and enzymatic hydrolysis: Synthesis and consumable cost evaluation. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16(1), 13–27.
  35. Pandey, K. K. (1999). A study of chemical structure of soft and harwood and wood polymers by FTIR spectrscopy. Journal of Applied Polymer Science, 71, 1969–1975.
  36. Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D. (2013). Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy, 104, 801–809.
  37. Ciftci, D., Saldaña, M. D. A. (2015). Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresource Technology, 194, 75–82.
  38. Cui, F. M., Zhang, X. Y., Shang, L. M. (2013). Thermogravimetric Analysis of Glucose-Based and Fructose-Based Carbohydrates. Advanced Materials Research, 805–806, 265–268.
  39. Mohan, M., Banerjee, T., Goud, V. V. (2015). Hydrolysis of bamboo biomass by subcritical water treatment. Bioresource Technology, 191, 244–252.
  40. Imman, S., Laosiripojana, N., Champreda, V. (2018). Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs. Applied Biochemistry and Biotechnology, 184, 432-443.
  41. Weiqi, W., Shubin, W., Liguo, L. (2013). Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresource Technology, 128, 725–730.
  42. Hongdan, Z., Shaohua, X., Shubin, W. (2013). Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresource Technology, 143, 391–396.
  43. Sun, S., Sun, S., Cao, X., Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.
  44. Fernández, M. A., Rissanen, J., Nebreda, A. P., Xu, C., Willför, S., Serna, J. G., Salmi, T., Grénman, H. (2018). Hemicelluloses from stone pine, holm oak, and Norway spruce with subcritical water extraction − comparative study with characterization and kinetics. Journal of Supercritical Fluids, 133, 647–657.
  45. Khuwijitjaru, P., Watsanit, K., Adachi, S. (2012). Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 18(1), 225–229.
  46. Sánchez-Ramírez, J., Martínez-Hernández, J. L., Segura-Ceniceros, P., López, G., Saade, H., Medina-Morales, M. A., Ramos-González, R., Aguilar, C. N., Ilyina, A. (2017). Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess and Biosystems Engineering, 40(1), 9–22.
  47. Sun, D., Alam, A., Tu, Y., Zhou, S., Wang, Y., Xia, T., Huang, J., Li, Y., Zahoor, Wei, X., Hao, B., Peng, L. (2017). Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresource Technology, 239, 74–81.
  48. Zhang, H., Wu, S. (2013). Subcritical CO2 pretreatment of sugarcane bagasse and its enzymatic hydrolysis for sugar production. Bioresource Technology, 149, 546–550.
  49. Carvalho, A. F. A., Marcondes, W. F., de Oliva Neto, P., Pastore, G. M., Saddler, J. N., Arantes, V. (2018). The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresource Technology, 250, 221–229.
  50. Purnomo, A., Yudiantoro, Y. A. W., Putro, J. N., Nugraha, A. T., Irawaty, W., Ismadji, S. (2016). Subcritical water hydrolysis of durian seeds waste for bioethanol production. International Journal of Industrial Chemistry, 7(1), 29–37.

No citation recorded.