Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
BibTex Citation Data :
@article{BCREC5227, author = {Thanyaporn Pongchan and Piyasan Praserthdam and Bunjerd Jongsomjit}, title = {Facile Investigation of Ti3+ State in Ti-based Ziegler-Natta Catalyst with A Combination of Cocatalysts Using Electron Spin Resonance (ESR)}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {15}, number = {1}, year = {2020}, keywords = {Ethylene polymerization; Ziegler-Natta catalyst; Cocatalysts; Titanium oxidation state; Electron spin resonance}, abstract = { This study aims to investigate the influences of a combination of cocatalysts including triethylaluminum (TEA) and tri-n-octylaluminum (TnOA) for activation of a commercial Ti-based Ziegler-Natta catalyst during ethylene polymerization and ethylene/1-hexene copolymerization on the change in Ti 3+ during polymerization. Thus, electron spin resonance (ESR) technique was performed to monitor the change in Ti 3+ depending on the catalyst activation by a single and combination of cocatalyst. It revealed that the amount of Ti 3+ played a crucial role on both ethylene polymerization and ethylene/1-hexene copolymerization. For ethylene polymerization, the activation with TEA apparently resulted in the highest catalytic activity. The activation with TEA+TnOA combination exhibited a moderate activity, whereas TnOA activation gave the lowest activity. In case of ethylene/1-hexene copolymerization, it revealed that the presence of 1-hexene decreased activity. The effect of different cocatalysts tended to be similar to the one in the absence of 1-hexene. The decrease of temperature from 80 to 70 °C in ethylene/1-hexene copolymerization tended to lower catalytic activity for TnOA and TEA+TnOA, whereas only slight effect was observed for TEA system. The effect of different cocatalyst activation on the change of Ti 3+ state of catalyst was elucidated by ESR measurement. It appeared that the activation of catalyst with TEA+TnOA combination essentially inhibited the reduction of Ti 3+ to Ti 2+ leading to lower activity. Furthermore, the polymer properties such as morphology and crystallinity can be altered by different cocatalysts. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {55--65} doi = {10.9767/bcrec.15.1.5227.55-65}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/5227} }
Refworks Citation Data :
This study aims to investigate the influences of a combination of cocatalysts including triethylaluminum (TEA) and tri-n-octylaluminum (TnOA) for activation of a commercial Ti-based Ziegler-Natta catalyst during ethylene polymerization and ethylene/1-hexene copolymerization on the change in Ti3+ during polymerization. Thus, electron spin resonance (ESR) technique was performed to monitor the change in Ti3+ depending on the catalyst activation by a single and combination of cocatalyst. It revealed that the amount of Ti3+ played a crucial role on both ethylene polymerization and ethylene/1-hexene copolymerization. For ethylene polymerization, the activation with TEA apparently resulted in the highest catalytic activity. The activation with TEA+TnOA combination exhibited a moderate activity, whereas TnOA activation gave the lowest activity. In case of ethylene/1-hexene copolymerization, it revealed that the presence of 1-hexene decreased activity. The effect of different cocatalysts tended to be similar to the one in the absence of 1-hexene. The decrease of temperature from 80 to 70 °C in ethylene/1-hexene copolymerization tended to lower catalytic activity for TnOA and TEA+TnOA, whereas only slight effect was observed for TEA system. The effect of different cocatalyst activation on the change of Ti3+ state of catalyst was elucidated by ESR measurement. It appeared that the activation of catalyst with TEA+TnOA combination essentially inhibited the reduction of Ti3+ to Ti2+ leading to lower activity. Furthermore, the polymer properties such as morphology and crystallinity can be altered by different cocatalysts. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)