Oligomerization of C2-C4 Hydrocarbons in the Presence of Ruthenium-Nickel Supported Catalysts

*Raila Toktassyn  -  1Department of Chemical Engineering, Kazakh-British Technical University, Tole bi 59, Almaty,, Kazakhstan
B.T. Utelbayev  -  1Department of Chemical Engineering, Kazakh-British Technical University, Tole bi 59, Almaty,, Kazakhstan
M. Oberson de Souza  -  2Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, 91501-907 Porto Alegre, Box 15003, Brazil
E.N. Suleymenov  -  3Laboratory of "Perspective Materials and Technologies", Kazakh-British Technical Un, Kazakhstan
Received: 19 May 2016; Published: 11 Oct 2016.
Open Access Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

The oligomerization of C2-C4 light hydrocarbon gasses in the presence of ruthenium and nickel supported catalysts is investigated. Determined selectivity of the catalysts by isooctane. Catalytic properties of the catalysts depend on the supported metals on the carrier. The nature of carrier also affects on reaction selectivity. The ruthenium-nickel supported bimetallic pillared montmorillonite is showed good selectivity to isooctane and value is about 60.8% at conversion 87.0%. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 19th May 2016; Revised: 25th July 2016; Accepted: 29th July 2016

How to Cite: Toktassyn, R., Utelbayev, B.T., de Souza, M.O., Suleymenov, E.N. (2016). Oligomerization of C2-C4 Hydrocarbons in the Presence of Ruthenium-Nickel Supported Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3): 431-437 (doi:10.9767/bcrec.11.3.495.431-437)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.3.495.431-437

oligomerization; montmorrillonite; isooctane; ruthenium; nickel

Article Metrics:

  1. Mantilla, A., Ferrat, G., Lopez-Ortega, A., Romero, E., Tzompantzi, F., Torres, M.,Ortız-Islas, E., Gomez, R. (2005). Catalytic behavior of sulfated TiO2 in light olefins oligomerization. Journal of Molecular Catalysis A, 228: 333-338.
  2. Tzompantzi, F., Mantilla, A., Del Angel, G., Padilla, J.M., Ferna´ndez, J.L., Dıaz-Gongora, J.A.I., Gomez, R. (2009). NiO–W2O3/Al2O3 catalysts for the production of ecological gasoline: Effect of both NiO and the preparation method on the isobutene oligomerization selectivity. Catalysis Today, 143: 132-136.
  3. Corma, A., Martinez, C., Doskocil, E. (2013). Designing MFI-based catalysts with improved catalyst life for C3-C5 oligomerization to high-quality liquid fuels. Journal of Catalysis, 300: 183-196.
  4. Martinez, A., Maria, A.A., Concepcion, P., Moussa, S. (2013). New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Applied Catalysis A: General, 467: 509-518.
  5. Lin, S., Shi, L., Zhang, H.P., Zhang, N., Yi, X.F., Zheng, A.M., Li, X.B. (2014). Tuning the pore structure of plug-containing Al-SBA-15 by post-treatment and its selectivity for C16 olefin in ethylene oligomerization. Microporous and Mesoporous Materials, 184: 151-161.
  6. Heveling, J., van Der Beek, A., De Pender, M. (1988). Oligomerization of ethene over nickel-exchanged zeolite Y into a diesel-range product. Appl. Catal., 42: 325-336.
  7. Ng, F.T.T., Creaser, D.C. (1994). Ethylene dimerization over modified nickel exchanged Y-zeolite. Applied Catalysis A: General, 119: 327-339.
  8. Lallemand, M., Rusu, O.A., Dumitriu, E., Finiels, A., Fajula, F., Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338: 37-43.
  9. Occelli, M.L., Hsu, J.T., Galaya, L.G. (1985). Propylene oligomerization over molecular sieves: Part i. zeolite effects on reactivity and liquid product selectivities. Journal of Molecular Catalysis A, 32: 377-390.
  10. Tiako Ngandjui, L.M., Thyrion, F.C. (1996). Kinetic Study and Modelization of n-Butenes Oligomerization over H-Mordenite. Industrial & Engineering Chemistry Research, 35: 1269-1274.
  11. Kloprogge, J.T. (1998). Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. Journal of Porous Materials, 5: 5-41.
  12. Ding, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., Zhu, H.Y. (2001). Porous Clays and Pillared Clays-Based Catalysts. Part 2: A Review of the Catalytic and Molecular Sieve Applications. Journal of Porous Materials, 8: 273-293.
  13. Vaccari, A. (1999). Clays and catalysis: a promising future. Applied Clay Science, 14: 161-…..
  14. Bonneviot, L., Olivier, D., Che, M. (1983). Dimerization of olefins with nickel-surface complexes in X-type zeolite or on silica. Journal of Molecular Catalysis A, 21: 415-430.
  15. Lallemand, M., Finiels, A., Fajula, F., Hulea, V. (2006). Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Applied Catalysis A: General, 301: 196-201.
  16. Bernard, C., François, F. (2001). Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance, Journal of Molecular Catalysis A, 173: 117-134.
  17. Mehmet, Z., Yalçın, T., Saim, Ö. (2010). Ruthenium(0) Nanoclusters Stabilized by a Nanozeolite Framework: Isolable, Reusable and Green Catalyst for the Hydrogenation of Neat Aromatics under Mild Conditions with the Unprecedented Catalytic Activity and Lifetime. Journal of the American Chemical Society, 132: 6541-6549.
  18. Aleksandra, M. (2005). Ni-loaded catalyst containing ZSM-5 zeolite for toluene hydrogenation, Applied Catalysis A General, 294: 260-272.
  19. Crisafulli, C., Scirè, S., Maggiore, R., Minicò, S., Galvagno, S. (1999). CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catalysis Letters, 59: 21-26.
  20. Jin, H.J., Jung, W.L., Dong, J.S., Yutaek, S., Wang, L.Y., Deuk, K.L., Dong, H.K. (2006). Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2. Applied Catalysis A General, 302: 151-156.
  21. Kloprogge, J.T., Evans, R., Hickey, L., Frost R.L. (2002). Characterisation and Al-pillaring of smectites from Miles, Queensland (Australia). Applied Clay Science, 20: 157-163.
  22. Korili, S.A., Gill, A., Korili, A., Trujillano, R., Vicente, M.A. (2010). Pillared clays and related catalysts. Springer: 522.
  23. Baylei, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D. (1999). A review of potentially low cost sorbents for heavy metals. Water Research, 33: 2469-…....
  24. Fan, M., Yuan, P., Zhu, Z. (2009). Core-shell structure iron nanoparticles well dispersed on montmorillonite. Journal of Magnetism and Magnetic Materials, 321: 3515-3519.
  25. Qingqing, W., Lin, P., Guohui, L., Ping, Zh., Dawei, L., Fenglin, H., Qufu, W. (2013). Activity of Laccase Immobilized TiO2-Montmorillonite Complexes. International Journal of Molecular Science, 14: 12520-12532.
  26. Tzompantzi, F., Mantilla, A., Del Angel, G., Padilla, J.M., Fernandez, J.L., Diaz-Gongora, J.A.I., Gomez, R. (2009). NiO-W2O3/Al2O3 catalysts for the production of ecological gasoline, Catalysis Today, 143: 132-136.
  27. Alcantara, R., Alcantara, E., Canoira, L., Franco, M.J., Herrera, M., Navarro, A. (2000). Trimerization of isobutene over Amberlyst-15 catalyst. Reactive and Functional Polymer, 45: 19-27.
  28. Ashcroft, A.T., Cheetham, A.K., Green, M.L.H., Vernon, P.D.F. (1991). Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 352: 225-226.
  29. Vernon, P.D.F., Green, M.L.H., Cheetham, A.K., Ashcroft, A.T. (1992). Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catalysis Today, 13: 417-426.
  30. Tsang, C., Claridge, J.B., Green, M.L.H. (1995). Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 23: 3-15.
  31. Serrano, D.P., Escola, J.M., Briones, L., Medina, S., Martinez, A. (2015). Hydroreforming of the oils from LDPE thermal cracking over Ni-Ru and Ru supported over hierarchical Beta zeolite. Fuel, 144: 287-294.
  32. Crisafulli, C., Scire, S., Maggiore, R., Minico, S., Galvagno, S. (1999). CO2 reforming of methane over Ni-Ru and Ni-Pd bimetalic catalysts. Catalysis Letters, 59: 21-26.