skip to main content

Oligomerization of C2-C4 Hydrocarbons in the Presence of Ruthenium-Nickel Supported Catalysts

1Department of Chemical Engineering, Kazakh-British Technical University, Tole bi 59, Almaty, Kazakhstan

2Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, 91501-907 Porto Alegre, Box 15003, Brazil

3Laboratory of "Perspective Materials and Technologies", Kazakh-British Technical University, Tole bi 59, Almaty, Kazakhstan

Received: 19 May 2016; Published: 11 Oct 2016.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2016 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

The oligomerization of C2-C4 light hydrocarbon gasses in the presence of ruthenium and nickel supported catalysts is investigated. Determined selectivity of the catalysts by isooctane. Catalytic properties of the catalysts depend on the supported metals on the carrier. The nature of carrier also affects on reaction selectivity. The ruthenium-nickel supported bimetallic pillared montmorillonite is showed good selectivity to isooctane and value is about 60.8% at conversion 87.0%. 

Fulltext View|Download
Keywords: oligomerization; montmorrillonite; isooctane; ruthenium; nickel

Article Metrics:

  1. Mantilla, A., Ferrat, G., Lopez-Ortega, A., Romero, E., Tzompantzi, F., Torres, M.,Ortız-Islas, E., Gomez, R. (2005). Catalytic behavior of sulfated TiO2 in light olefins oligomerization. Journal of Molecular Catalysis A, 228: 333-338
  2. Tzompantzi, F., Mantilla, A., Del Angel, G., Padilla, J.M., Ferna´ndez, J.L., Dıaz-Gongora, J.A.I., Gomez, R. (2009). NiO–W2O3/Al2O3 catalysts for the production of ecological gasoline: Effect of both NiO and the preparation method on the isobutene oligomerization selectivity. Catalysis Today, 143: 132-136
  3. Corma, A., Martinez, C., Doskocil, E. (2013). Designing MFI-based catalysts with improved catalyst life for C3-C5 oligomerization to high-quality liquid fuels. Journal of Catalysis, 300: 183-196
  4. Martinez, A., Maria, A.A., Concepcion, P., Moussa, S. (2013). New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Applied Catalysis A: General, 467: 509-518
  5. Lin, S., Shi, L., Zhang, H.P., Zhang, N., Yi, X.F., Zheng, A.M., Li, X.B. (2014). Tuning the pore structure of plug-containing Al-SBA-15 by post-treatment and its selectivity for C16 olefin in ethylene oligomerization. Microporous and Mesoporous Materials, 184: 151-161
  6. Heveling, J., van Der Beek, A., De Pender, M. (1988). Oligomerization of ethene over nickel-exchanged zeolite Y into a diesel-range product. Appl. Catal., 42: 325-336
  7. Ng, F.T.T., Creaser, D.C. (1994). Ethylene dimerization over modified nickel exchanged Y-zeolite. Applied Catalysis A: General, 119: 327-339
  8. Lallemand, M., Rusu, O.A., Dumitriu, E., Finiels, A., Fajula, F., Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338: 37-43
  9. Occelli, M.L., Hsu, J.T., Galaya, L.G. (1985). Propylene oligomerization over molecular sieves: Part i. zeolite effects on reactivity and liquid product selectivities. Journal of Molecular Catalysis A, 32: 377-390
  10. Tiako Ngandjui, L.M., Thyrion, F.C. (1996). Kinetic Study and Modelization of n-Butenes Oligomerization over H-Mordenite. Industrial & Engineering Chemistry Research, 35: 1269-1274
  11. Kloprogge, J.T. (1998). Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. Journal of Porous Materials, 5: 5-41
  12. Ding, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., Zhu, H.Y. (2001). Porous Clays and Pillared Clays-Based Catalysts. Part 2: A Review of the Catalytic and Molecular Sieve Applications. Journal of Porous Materials, 8: 273-293
  13. Vaccari, A. (1999). Clays and catalysis: a promising future. Applied Clay Science, 14: 161-….
  14. Bonneviot, L., Olivier, D., Che, M. (1983). Dimerization of olefins with nickel-surface complexes in X-type zeolite or on silica. Journal of Molecular Catalysis A, 21: 415-430
  15. Lallemand, M., Finiels, A., Fajula, F., Hulea, V. (2006). Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Applied Catalysis A: General, 301: 196-201
  16. Bernard, C., François, F. (2001). Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance, Journal of Molecular Catalysis A, 173: 117-134
  17. Mehmet, Z., Yalçın, T., Saim, Ö. (2010). Ruthenium(0) Nanoclusters Stabilized by a Nanozeolite Framework: Isolable, Reusable and Green Catalyst for the Hydrogenation of Neat Aromatics under Mild Conditions with the Unprecedented Catalytic Activity and Lifetime. Journal of the American Chemical Society, 132: 6541-6549
  18. Aleksandra, M. (2005). Ni-loaded catalyst containing ZSM-5 zeolite for toluene hydrogenation, Applied Catalysis A General, 294: 260-272
  19. Crisafulli, C., Scirè, S., Maggiore, R., Minicò, S., Galvagno, S. (1999). CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catalysis Letters, 59: 21-26
  20. Jin, H.J., Jung, W.L., Dong, J.S., Yutaek, S., Wang, L.Y., Deuk, K.L., Dong, H.K. (2006). Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2. Applied Catalysis A General, 302: 151-156
  21. Kloprogge, J.T., Evans, R., Hickey, L., Frost R.L. (2002). Characterisation and Al-pillaring of smectites from Miles, Queensland (Australia). Applied Clay Science, 20: 157-163
  22. Korili, S.A., Gill, A., Korili, A., Trujillano, R., Vicente, M.A. (2010). Pillared clays and related catalysts. Springer: 522
  23. Baylei, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D. (1999). A review of potentially low cost sorbents for heavy metals. Water Research, 33: 2469-…...
  24. Fan, M., Yuan, P., Zhu, Z. (2009). Core-shell structure iron nanoparticles well dispersed on montmorillonite. Journal of Magnetism and Magnetic Materials, 321: 3515-3519
  25. Qingqing, W., Lin, P., Guohui, L., Ping, Zh., Dawei, L., Fenglin, H., Qufu, W. (2013). Activity of Laccase Immobilized TiO2-Montmorillonite Complexes. International Journal of Molecular Science, 14: 12520-12532
  26. Tzompantzi, F., Mantilla, A., Del Angel, G., Padilla, J.M., Fernandez, J.L., Diaz-Gongora, J.A.I., Gomez, R. (2009). NiO-W2O3/Al2O3 catalysts for the production of ecological gasoline, Catalysis Today, 143: 132-136
  27. Alcantara, R., Alcantara, E., Canoira, L., Franco, M.J., Herrera, M., Navarro, A. (2000). Trimerization of isobutene over Amberlyst-15 catalyst. Reactive and Functional Polymer, 45: 19-27
  28. Ashcroft, A.T., Cheetham, A.K., Green, M.L.H., Vernon, P.D.F. (1991). Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 352: 225-226
  29. Vernon, P.D.F., Green, M.L.H., Cheetham, A.K., Ashcroft, A.T. (1992). Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catalysis Today, 13: 417-426
  30. Tsang, C., Claridge, J.B., Green, M.L.H. (1995). Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 23: 3-15
  31. Serrano, D.P., Escola, J.M., Briones, L., Medina, S., Martinez, A. (2015). Hydroreforming of the oils from LDPE thermal cracking over Ni-Ru and Ru supported over hierarchical Beta zeolite. Fuel, 144: 287-294
  32. Crisafulli, C., Scire, S., Maggiore, R., Minico, S., Galvagno, S. (1999). CO2 reforming of methane over Ni-Ru and Ni-Pd bimetalic catalysts. Catalysis Letters, 59: 21-26

Last update:

No citation recorded.

Last update:

No citation recorded.