skip to main content

Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review

Department of Chemical Engineering, Diponegoro University, Indonesia

Received: 17 May 2016; Published: 11 Oct 2016.
Open Access Copyright (c) 2016 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Biodiesel is an alternative biofuel that can replace diesel oil without requiring modifications to the engine and advantageously produces cleaner emissions. Biodiesel can be produced through transesterification process between oil or fat and alcohol to form esters and glycerol. The transesterification can be carried out with or without a catalyst. The catalyzed production of biodiesel can be performed by using homogeneous, heterogeneous and enzyme. Meanwhile, non-catalytic transesterification with supercritical alcohol provides a new way of producing biodiesel. Microwave and ultrasound assisted transesterification significantly can reduce reaction time as well as improve product yields. Another process, a plasma technology is promising for biodiesel synthesis from vegetable oils due to very short reaction time, no soap formation and no glycerol as a by-product. This paper reviews briefly the technologies on transesterification reaction for biodiesel production using homogeneous, heterogeneous, and enzyme catalysts, as well as advanced methods (supercritical, microwave, ultrasonic, and plasma technology). Advantages and disadvantages of each method were described comprehensively.
Fulltext View|Download
Keywords: biodiesel; transesterification; advantage and disadvantage; catalytic and non-catalytic process; plasma technology
Funding: Ministry of Research, Technology and Higher Education, Republic of Indonesia

Article Metrics:

Article Info
Section: Review Articles
Language : EN
Statistics:
  1. Ma, F., Hanna, M.A. (1999). Biodiesel production : a review. Bioresour. Technol., 70: 1-15
  2. Boehman, A.L. (2005). Biodiesel production and processing. Fuel Process. Technol., 86(10): 1057-1058
  3. Knothe, G., Sharp, C.A., Ryan, T.W. (2006). Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy & Fuels, 20(1): 403-408
  4. Vyas, A.P., Verma, J.L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89(1): 1-9
  5. Barnard, T.M., Leadbeater, N.E., Boucher, M.B., Stencel, L.M., Wilhite, B.A. (2007). Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuels, 21(11): 1777-1781
  6. Barnwal, B.K., Sharma, M.P. (2005). Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev., 9(4): 363-378
  7. Dmytryshyn, S.L., Dalai, A.K., Chaudhari, S.T., Mishra, H.K., Reaney, M.J. (2004). Synthesis and characterization of vegetable oil derived esters: Evaluation for their diesel additive properties. Bioresour. Technol., 92(1): 55-64
  8. Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers. Manag., 43(17): 2349-2356
  9. Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renew. Sustain. Energy Rev., 12(2): 542-552
  10. Carmen, S., Vinatoru, M., Nishimura, R., Maeda, Y. (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason. Sonochem., 12: 367-372
  11. Zhang, L., Sheng, B., Xin, Z., Liu, Q., Sun, S. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour. Technol., 101(21): 8144-8150
  12. Cho, Y.B., Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour. Technol., 101(22): 8515-8519
  13. Khemthong, P., Luadthong, C., Nualpaeng, W., Changsuwan, P., Tongprem, P., Viriya-empikul, N., Faungnawakij, K. (2012). Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal. Today, 190(1): 112-116
  14. Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy, 50: 795-799
  15. Chakraborty, R., Bepari, S., Banerjee, A. (2010). Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem. Eng. J., 165(3): 798-805
  16. Nakatani, N., Takamori, H., Takeda, K., Sakugawa, H. (2009). Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour. Technol., 100(3): 1510-1513
  17. Wei, Z., Xu, C., Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol., 100(11): 2883-2885
  18. Jazie, A.A., Pramanik, H., Sinha, A.S. (2013). Egg shell as eco-friendly catalyst for transesterification of rapeseed oil : optimization for biodiesel production. Int. J. Sustain. Dev. Green Econ., 2: 27-32
  19. Berchmans, H.J., Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol., 99(6): 1716-1721
  20. Tiwari, A.K., Kumar, A., Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids : An optimized process. Biomass and Bioenergy, 31: 569-575
  21. Correia, L.M., Saboya, R.M.A., Campelo, N.D.S., Cecilia, J.A., Rodríguez-Castellón, E., Cavalcante, C.L., Vieira, R.S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour. Technol., 151: 207-213
  22. Ilgen, O. (2011). Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol., 92(3): 452-455
  23. Boey, P.L., Ganesan, S., Maniam, G.P., Khairuddean, M. (2012). Catalysts derived from waste sources in the production of biodiesel using waste cooking oil. Catal. Today, 190(1): 117-121
  24. Niju, S., Meera, K.M., Begum, S., Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. J. Saudi Chem. Soc., 18: 702-706
  25. Meher, L., Sagar, V.D., Naik, S. (2006). Technical aspects of biodiesel production by transesterification-a review. Renew. Sustain. Energy Rev., 10(3): 248-268
  26. Canakci, M., Gerpen, J.Van. (1999). Biodiesel production via acid catalysis. Trans. ASAE (American Soc. Agric. Eng.), 42(5): 1203-1210
  27. Freedman, B., Butterfield, R.O., Pryde, E.H. (1986). Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc., 63(10): 1375-1380
  28. Ramadhas, A.S., Jayaraj, S., Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4): 335-340
  29. Zheng, S., Kates, M., Dubé, M.A., McLean, D.D. (2006). Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy, 30(3): 267-272
  30. Bhatti, H., Hanif, M., Qasim, M. (2008). Biodiesel production from waste tallow. Fuel, 87(13-14): 2961-2966
  31. Freedman, B., Pryde, E.H., Mounts, T.L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc., 61(10): 1638-1643
  32. Leung, D.Y.C., Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol., 87(10): 883-890
  33. Issariyakul, T., Dalai, A.K. (2010). Biodiesel production from greenseed canola oil. Energy & Fuels, 24(7): 4652-4658
  34. Moser, B.R., Vaughn, S.F. (2010). Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability. Biomass and Bioenergy, 34(4): 550-558
  35. Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A Chem., 252(1-2): 107-112
  36. Felizardo, P., Correia, M.J.N., Raposo, I., Mendes, J.F., Berkemeier, R., Bordado, J.M. (2006). Production of biodiesel from waste frying oils. Waste Manag., 26(5): 487-494
  37. Yan, S., Salley, S.O., Simon, Ng. K.Y. (2009). Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl. Catal. A Gen., 353(2): 203-212
  38. Kulkarni, M.G., Dalai, A.K. (2006). Waste cooking oil’s an economical source for biodiesel: A review. Ind. Eng. Chem. Res., 45(9): 2901-2913
  39. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353-5363
  40. Yan, S., Di Maggio, C., Mohan, S., Kim, M., Salley, S.O., Ng, K.Y.S. (2010). Advancements in heterogeneous catalysis for biodiesel synthesis. Top Catal., 53(11-12): 721-736
  41. Maçaira, J., Santana, A., Recasens, F., Larrayoz, M.A. (2011). Biodiesel production using supercritical methanol/carbon dioxide mixtures in a continuous reactor. Fuel, 90(6): 2280-2288
  42. Zhang, S., Zu, Y.G., Fu, Y.J., Luo, M., Zhang, D.Y., Efferth, T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour. Technol., 101(3): 931-936
  43. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv., 28(4): 500-518
  44. Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind. Eng. Chem. Res., 45(9): 3009-3014
  45. Zhang, J., Chen, S., Yang, R., Yan, Y. (2010). Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 89(10): 2939-2344
  46. Issariyakul, T., Dalai, A.K. (2014). Biodiesel from vegetable oils. Renew. Sustain. Energy Rev., 31: 446-471
  47. Ranganathan, S.V., Narasimhan, S.L., Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour. Technol., 99(10): 3975-3981
  48. Fukuda, H., Kond, A., Noda, H. (2001). Biodiesel fuel production by transesterification of oils : A review. J. Biosci. Bioeng., 92(5): 405-416
  49. Boey, P-L., Maniam, G.P., Hamid, S.A. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal, 168(1): 15-22
  50. Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy, 104: 683-710
  51. D’Ippolito, S.A., Yori, J.C., Iturria, M.E., Pieck, C.L., Vera, C.R. (2007). Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery. Energy & Fuels, 21(4): 339-346
  52. Tan, K.T., Lee, K.T. (2011). A review on supercritical fluids (SCF) technology in sustainable biodiesel production : Potential and challenges. Renew. Sustain. Energy Rev., 15(5): 2452-2456
  53. Kusdiana, D., Saka, S. (2004). Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Appl. Biochem. Biotechnol., 113-116: 781-791
  54. Han, H., Cao, W., Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process. Biochem., 40(9): 3148-3151
  55. Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers. Manag., 48(3): 937-941
  56. Yin, J-Z., Xiao, M., Song, J-B. (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Convers. Manag., 49(5): 908-912
  57. Lidström, P., Tierney, J., Wathey, B., Westman, J. (2001). Microwave assisted organic synthesis - a review. Tetrahedron, 57(589): 9225-9283
  58. Azcan, N., Danisman, A. (2007). Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 86(17-18): 2639-2644
  59. Singh, A.K., Fernando, S.D., Hernandez, R. (2007). Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy & Fuels, 32(8): 1161-1164
  60. Ji, J., Wang, J., Li, Y., Yu, Y., Xu, Z. (2006). Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 44: 411-414
  61. Siatis, N.G., Kimbaris, A.C., Pappas, C.S., Tarantilis, P.A., Polissiou, M.G. (2006). Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. J. Am. Oil Chem. Soc., 83(1): 53-57
  62. Kalva, A., Sivasankar, T., Moholkar, V.S. (2009). Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind. Eng. Chem. Res., 48(1): 534-544
  63. Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P., Parvulescu, V.I., Hardacre, C. (2009). Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-Evidences of the nature of the active site and catalytic performances. J. Catal., 263(1): 56-66
  64. Lawson, J.A., Baosman, A.A. (2005). Chemical synthesis methods using electro-catalysis. US Patent 2005/0262760 A1 (1 Dec. 2005)
  65. Lawson, J.A., Baosman, A.A.. (2010). Method of electro-catalytic reaction to produce mono alkyl esters for renewable biodiesel. US Patent 7,722,755 B2 (25 May 2010)
  66. Istadi, I., Yudhistira, A.D., Anggoro, D.D., Buchori, L. (2014). Electro-catalysis system for biodiesel synthesis from palm oil over dielectric-barrier discharge plasma reactor. Bull. Chem. React. Eng. Catal., 9(2): 111-120
  67. Salamatinia, B., Mootabadi, H., Bhatia, S., Abdullah, A.Z. (2010). Optimization of ultrasonic-assisted heterogeneous biodiesel production from palm oil : A response surface methodology approach. Fuel Process. Technol., 91(5): 441-448
  68. Carmen, S., Vinatoru, M., Maeda, Y., Bandow, H. (2007). Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason. Sonochem., 14(4): 413-417
  69. Colucci, J.A., Borrero, E.E., Alape, F. (2005). Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc., 82(7): 525-530
  70. Parkar, P.A., Choudhary, H.A., Moholkar, V.S. (2012). Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis. Chem. Eng. J., 187: 248-260
  71. Chen, K.S., Lin, Y.C., Hsu, K.H., Wang, H.K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy, 38(1): 151-156
  72. Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K. (2008). Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol., 89(12): 1330-1336
  73. Encinar, J.M,, González, J.F., Martínez, G., Sánchez, N., Pardal, A. (2012). Soybean oil transesterification by the use of a microwave flow system. Fuel, 95: 386-393
  74. Mazubert, A., Taylor, C., Aubin, J., Poux, M. (2014). Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresour. Technol., 161: 270-279
  75. Ma, F., Clements, L.D., Hanna, M.A. (1998). The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans. ASAE (American Soc Agric Eng.), 41(5): 1261-1264
  76. Endalew, A.K., Kiros, Y., Zanzi, R. (2011). Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy, 36(5): 2693-2700
  77. Darnoko, D., Cheryan, M. (2000). Continuous production of palm methyl esters. J. Am. Oil Chem. Soc., 77(12): 1269-1272
  78. Hsieh, L.S., Kumar, U., Wu, J.C.S. (2010). Continuous production of biodiesel in a packed-bed reactor using shell-core structural Ca(C3H7O3)2/CaCO3 catalyst. Chem. Eng. J., 158(2): 250-256
  79. Feng, Y., Zhang, A., Li, J., He, B. (2011). A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour. Technol., 102(3): 3607-3609
  80. Ren, Y., He, B., Yan, F., Wang, H., Cheng, Y., Lin, L., Feng, Y., Li, J. (2012). Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst. Bioresour. Technol., 113: 19-22
  81. Da Silva, F.M., Pinho, D.M.M., Houg, G.P., Reis, I.B.A., Kawamura, M., Quemel, M.S.R., Montes, P.R., Suarez, P.A.Z. (2014). Continuous biodiesel production using a fixed-bed Lewis-based catalytic system. Chem. Eng. Res. Des., 92(8): 1463-1469
  82. Yin, J-Z., Xiao, M., Wang, A-Q., Xiu, Z-L. (2008). Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Convers. Manag., 49(12): 3512-3516
  83. Micic, R.D., Tomić, M.D., Kiss, F.E., Nikolić-Djorić, E.B., Simikić, M. (2014). Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification. Energy Convers. Manag., 86: 717-726
  84. Jahanmiri, A,, Rahimpour, M,R,, Mohamadzadeh Shirazi, M., Hooshmand, N., Taghvaei, H. (2012). Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material. Chem. Eng. J., 191: 416-425
  85. Rahimpour, M.R,, Jahanmiri, A., Mohamadzadeh Shirazi, M., Hooshmand, N., Taghvaei, H. (2013). Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: Effect of voltage and catalyst configuration. Chem. Eng. J., 219: 245-253
  86. Huang, A., Xia, G., Wang, J., Suib, S.L., Hayashi, Y., Matsumoto, H. (2000). CO2 reforming of CH4 by atmospheric pressure AC discharge plasmas. J. Catal., 189(2): 349-359
  87. Li, M., Xu, G., Tian, Y., Chen, L., Fu, H. (2004). Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J. Phys. Chem. A., 108(10): 1687-1693
  88. Pietruszka, B., Heintze, M. (2004). Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma. Catal. Today, 90(1-2): 151-158
  89. Zhang, K., Eliasson, B., Kogelschatz, U. (2002). Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite hy promoted by a dielectric-barrier discharge. Ind. Eng. Chem. Res., 41(6): 1462-1468
  90. Zou, J., Zhang, Y., Liu, C., Li, Y., Eliasson, B. (2003). Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges. Plasma Chem. Plasma Process., 23(1): 69-82
  91. Caldwell, T.A., Le, H., Lobban, L.L., Mallinson, R.G. (2001). Partial oxidation of methane to form synthesis gas in a tubular AC plasma reactor. In: Spivey, J.J., Iglesia, E., and Fleisch TH, editor. Studies in Surface Science and Catalysis. Elsevier Science B.V. p. 265-270
  92. Liu, C., Marafee, A., Mallinson, R., Lobban, L. (1997). Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. Appl. Catal. A Gen., 164(1-2): 21-33
  93. Larkin, D.W., Zhou, L., Lobban, L.L., Mallinson R.G. (2001). Product selectivity control and organic oxygenate pathways from partial oxidation of methane in a silent electric discharge reactor. Ind. Eng. Chem. Res., 40(23): 5496-5506
  94. Istadi, I., Amin, N.A.S. (2006). Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review. Fuel, 85(5-6): 577-592
  95. Istadi, I., Amin, N.A.S. (2006). Hybrid artificial neural network−genetic algorithm technique for modeling and optimization of plasma reactor. Ind. Eng. Chem. Res., 45(20): 6655-6664
  96. Kogelschatz, U. (2003). Dielectric-barrier discharges : their history, discharge physics, and industrial applications. plasma chem plasma process. Plasma Chemistry and Plasma Processing, 23(1): 1-46
  97. Istadi, I. (2006). Catalytic conversion of methane and carbon dioxide in a conventional fixed bed and dielectric-barrier discharge plasma reactors. PhD Thesis. Universiti Teknologi Malaysia, Malaysia
  98. Fridman, A. (2008). Plasma chemistry. New York, United States of America: Cambridge University Press
  99. Lee, D.H., Kim, T. (2013). Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int. J. Hydrogen Energy, 38(14): 6039-6043
  100. Kropf, M.M. (2009). Ultrasonic and microwave methods for enhacing the rate of a chemical reaction and apparatus for such methods. US Patent 2009/0000941 A1 (1 Jan. 2009)
  101. Hanh, H.D., Dong, N.T., Okitsu, K., Maeda, Y., Nishimura, R. (2007). Effects of molar ratio, catalyst concentration and temperature on transesterification of triolein with ethanol under ultrasonic irradiation. J. Japan Pet. Inst., 50(4): 195-199
  102. Vyas, A.P., Verma, J.L,, Subrahmanyam, N. (2011). Effects of molar ratio, alkali catalyst concentration and temperature on transesterification of jatropha oil with methanol under ultrasonic irradiation. Adv. Chem. Eng. Sci., 1: 45-50
  103. Wang, J., Huang, Q., Huang, F., Wang, J., Huang, Q. (2007). Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant. Chin. J. BioTechnol., 23(6): 1121-1128
  104. Santos, F.F.P., Rodrigues, S., Fernandes, F.A.N. (2009). Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process. Technol., 90(2): 312-316
  105. Badday, A.S., Abdullah, A.Z., Lee, K.T., Khayoon, M.S. (2012). Intensification of biodiesel production via ultrasonic-assisted process : A critical review on fundamentals and recent development. Renew. Sustain. Energy Rev., 16(7): 4574-4587
  106. Ramachandran, K., Suganya, T., Gandhi, N.N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst : A review. Renew. Sustain. Energy Rev., 22: 410-418
  107. Veljković, V.B., Avramović, J.M., Stamenković, O.S. (2012). Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives. Renew. Sustain. Energy Rev., 16: 1193-1209
  108. Refaat, A.A., Sheltawy, S.T., Sadek, K.U. (2008). Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Technol., 5(3): 315-322
  109. Mutyala, S., Fairbridge, C., Paré, J.R.J., Bélanger, J.M.R., Ng, S., Hawkins, R. (2010). Microwave applications to oil sands and petroleum: A review. Fuel Process. Technol., 91(2): 127-135
  110. Motasemi, F., Ani, F.N. (2012). A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev., 16(7): 4719-4733
  111. Sajjadi, B., Abdul Aziz, A.R., Ibrahim, S. (2014). Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renew. Sustain. Energy Rev., 37: 762-777
  112. Groisman, Y., Gedanken, A. (2008). Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C., 112(24): 8802-8808
  113. Manco, I., Giordani, L., Vaccari, V., Oddone, M. (2012). Microwave technology for the biodiesel production : Analytical assessments. Fuel, 95: 108-112
  114. He, H., Sun, S., Wang, T., Zhu, S. (2007). Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. J. Am. Oil Chem. Soc., 84(4): 399-404
  115. Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol., 91(3): 289-295
  116. Saka, S., Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225-231
  117. Warabi, Y., Kusdiana, D., Saka, S. (2004). Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl. Biochem. Biotechnol., 113: 793-801
  118. Pinnarat, T., Savage, P.E. (2008). Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind. Eng. Chem. Res., 47(18): 6801-6808
  119. Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol., 90(12): 1502-1514
  120. Warabi, Y., Kusdiana, D., Saka, S. (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Technol., 91(3): 283-287
  121. Bajaj, A., Lohan, P., Jha, P.N., Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B Enzym, 62(1): 9-14
  122. Fjerbaek, L., Christensen, K.V., Norddahl, B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng., 102(5): 1298-1315
  123. Miller, C., Austin, H., Posorske, L., Gonzlez, J. (1988). Characteristics of an immobilized lipase for the commercial synthesis of esters. J. Am. Oil Chem. Soc., 65(6): 927-931
  124. Posorske, L.H., LeFebvre, G.K., Miller, C.A., Hansen, T.T., Glenvig, B.L. (1988). Process considerations of continuous fat modification with an immobilized lipase. J. Am. Oil Chem. Soc., 65(6): 922-926
  125. Paiva, A.L., Balcao, V.M., Malcata, F.X. (2000). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb. Technol., 27(3-5): 187-204
  126. Babu, N.S., Sree, R., Prasad, P.S.S., Lingaiah, N. (2008). Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 22(3): 1965-1971
  127. Xie, W., Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A Chem., 255(1-2): 1-9
  128. Garcia, C.M., Teixeira, S., Marciniuk, L.L., Schuchardt, U. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour. Technol., 99(14): 6608-6613
  129. López, D.E., Goodwin, J.G., Bruce, D.A., Lotero, E. (2014). Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. A Gen., 295(2): 97-105
  130. Marchetti, J.M., Miguel, V.U., Errazu, A.F. (2007). Possible methods for biodiesel production. Renew. Sustain. Energy Rev., 11(6): 1300-1311
  131. McNeff, C.V., McNeff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Krohn, B.J., Fedie, R.L., Hoye, T.R. (2008). A continuous catalytic system for biodiesel production. Appl. Catal. A Gen., 343(1-2): 39-48
  132. Islam, A., Taufiq-Yap, Y.H., Chu, C-M., Chan, E-S., Ravindra, P. (2013). Studies on design of heterogeneous catalysts for biodiesel production. Process Saf. Environ. Prot., 91(1-2): 131-144
  133. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806
  134. Jacobson, K., Gopinath, R., Meher, L., Dalai, A. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B Environ., 85(1-2): 86-91
  135. Furuta, S., Matsuhashi, H., Arata, K. (2006). Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass and Bioenergy, 30(10): 870-873
  136. Chen, H., Peng, B., Wang, D., Wang, J. (2007). Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front. Chem. Eng. China, 1(1): 11-15
  137. Srinivas, D., Satyarthi, J.K. (2011). Biodiesel production from vegetable oils and animal fat over solid acid double-metal cyanide catalysts. Catal. Surv. Asia, 15(3): 145-160
  138. Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., Prasad, P.S.S. (2004). Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts : effect of method of preparation of the catalyst on its structural stability and reactivity. Appl. Catal. A Gen., 276(1-2): 163-168
  139. Verhoef, M.J., Kooyman, P.J., Peters, J.A., van Bekkum, H. (1999). A study on the stability of MCM-41-supported heteropoly acids under liquid- and gas-phase esterification conditions. Microporous Mesoporous Mater., 27(2-3): 365-371
  140. De Almeida, R.M., Noda, L.K., Gonçalves, N.S., Meneghetti, S.M.P., Meneghetti, M.R. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl. Catal. A Gen., 347(3): 100-105
  141. Furuta, S., Matsuhashi, H., Arata, K. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun., 5(12): 721-723
  142. Mbaraka, I.K., McGuire, K.J., Shanks, B.H. (2006). Acidic mesoporous silica for the catalytic conversion of fatty acids in beef tallow. Ind. Eng. Chem. Res., 45(9): 3022-3028
  143. Lou, W.Y., Zong, M.H., Duan, Z.Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol., 99(18): 8752-8758
  144. Chen, G., Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresour. Technol., 102(3): 2635-2640
  145. Komintarachat, C., Chuepeng, S. (2009). Solid acid catalyst for biodiesel production from waste used cooking oils. Ind. Eng. Chem. Res., 48(20): 9350-9353
  146. Yan, F., Yuan, Z., Lu, P., Luo, W., Yang, L., Deng, L. (2011). Fe-Zn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil. Renew. Energy, 36(7): 2026-2031
  147. Yan, F., Yuan, Z., Lü, P., Luo, W., Yang, L., Deng, L. (2010). Synthesis of biodiesel by Fe(II)-Zn double-metal cyanide complexes. J. Fuel Chem. Technol., 38(3): 281-286
  148. Srilatha, K., Issariyakul, T., Lingaiah, N., Sai Prasad, P.S., Kozinski, J., Dalai,A.K. (2010). Efficient esterification and transesterification of used cooking oil using 12-tungstophosphoric acid (TPA)/Nb2O5 catalyst. Energy & Fuels, 24(13), 4748-4755
  149. Melero, J.A., Bautista, L.F., Morales, G., Iglesias, J., Sánchez-Vázquez, R. (2010). Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chem. Eng. J., 161(3): 323-331
  150. Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61: 276-297
  151. Ketcong, A., Meechan, W., Naree, T., Seneevong, I., Winitsorn, A., Butnark, S., Ngamcharussrivichai, C. (2014). Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor. J. Ind. Eng. Chem., 20(4): 1665-1671
  152. De Moura, C.V.R., De Castro, A.G., De Moura, E.M., Dos Santos, J.R., Moita Neto, J.M. (2010). Heterogeneous catalysis of babassu oil monitored by thermogravimetric analysis. Energy & Fuels, 24(15): 6527-6532
  153. Bunyakiat, K., Makmee, S., Sawangkeaw, R., Ngamprasertsith, S. (2006). Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy & Fuels, 20(8): 812-817
  154. Noureddini, H., Gao, X., Philkana, R.S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol., 96(7): 769-777
  155. Darnoko, D., Cheryan, M. (2000). Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc., 77(12): 1263-1267
  156. Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci., 31: 466-487
  157. Schuchardt, U., Sercheli, R., Matheus, R. (1998). Transesterification of vegetable oils : a review. J. Braz. Chem. Soc., 9(1): 199-210
  158. Liu, K.S. (1994). Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J. Am. Oil Chem. Soc., 71(11): 1179-1187
  159. Zhang, Y., Dube, M.A., McLean, D.D., Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol., 89(1): 1-16
  160. Kusdiana, D., Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5): 693-698
  161. Shah, S., Sharma, S., Gupta, M.N. (2004). Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy & Fuels, 18(15): 154-159
  162. Nelson, L.A., Foglia, T.A., Marmer, W.N. (1996). Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc., 73(8): 1191-1195
  163. Kumari, V., Shah, S., Gupta, M.N. (2007). Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels, 21(12): 368-372
  164. Al-Zuhair, S. (2005). Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: A kinetics study. Biotechnol. Prog., 21(5): 1442-1448
  165. Du, W., Xu, Y.Y., Liu, D.H., Li, Z.B. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B Enzym., 37(1-6): 68-71
  166. Suarez, P.A.Z., Meneghetti, S.M.P., Meneghetti, M.R., Wolf, C.R. (2007). Transformation of triglycerides into fuels, polymers and chemicals some applications of catalysis in oleochemistry. Quim. Nova., 30(3): 667-676
  167. Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J., 116(1): 61-66
  168. Buchori, L., Istadi, I., Purwanto, P., Kurniawan, A., Maulana, T.I. (2016). Preliminary testing of hybrid catalytic-plasma reactor for biodiesel production using modified-carbon catalyst. Bull. Chem. React. Eng. Catal., 11 (1): 59-65

Last update: 2021-10-15 09:31:14

No citation recorded.

Last update: 2021-10-15 09:31:14

  1. Glycerolysis using KF/CaO-MgO catalyst: Optimisation and reaction kinetics

    Buchori L.. Jurnal Teknologi, 82 (5), 2020. doi: 10.11113/jt.v82.14585
  2. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Buchori L.. E3S Web of Conferences, 31 , 2018. doi: 10.1051/e3sconf/20183102009
  3. Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics

    Gad M.S.. Energy, 127 , 2021. doi: 10.1016/j.energy.2021.120019
  4. Biodiesel - A transesterified product of non-edible castor oil

    Tariq M.. Revue Roumaine de Chimie, 64 (12), 2019. doi: 10.33224/rrch.2019.64.12.02
  5. Fast rate production of biodiesel from neem seed oil using a catalyst made from banana peel ash loaded with metal oxide (Li-CaO/Fe2(SO4)3)

    Madai I.J.. Advances in Materials Science and Engineering, 127 , 2020. doi: 10.1155/2020/7825024
  6. Synthesis of biodiesel on a hybrid catalytic-plasma reactor over K2O/CaO-ZnO catalyst

    Buchori L.. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 18 (3), 2017.
  7. Reaction rate law model and reaction mechanism covering effect of plasma role on the transesterification of triglyceride and methanol to biodiesel over a continuous flow hybrid catalytic-plasma reactor

    Purwanto P.. Heliyon, 6 (10), 2020. doi: 10.1016/j.heliyon.2020.e05164
  8. Improvement of oxidation stability of fatty acid methyl esters derived from soybean oil via partial hydrogenation using dielectric barrier discharge plasma

    Kongprawes G.. International Journal of Energy Research, 2020. doi: 10.1002/er.6121
  9. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization

    Silitonga A.S.. Renewable Energy, 127 , 2020. doi: 10.1016/j.renene.2019.07.065
  10. Recent updates on biodiesel production techniques: A review

    Gadetskaya A.V.. Recent Innovations in Chemical Engineering, 14 (1), 2021. doi: 10.2174/2405520413999200807151306
  11. Optimization of monoglycerides production using KF/CaO-MgO heterogeneous catalysis

    Buchori L.. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (3), 2019. doi: 10.9767/bcrec.14.3.4251.689-696
  12. Use of the Langmuir-Hinshelwood-Hougen-Watson equation to describe the ethyl esterification of fatty acids catalyzed by a fermented solid with lipase activity

    Wiederkehr B.. Biochemical Engineering Journal, 127 , 2021. doi: 10.1016/j.bej.2021.107936
  13. Effect of temperature and concentration of zeolite catalysts from geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process

    Buchori L.. Processes, 8 (12), 2020. doi: 10.3390/pr8121629
  14. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Istadi I.. MATEC Web of Conferences, 127 , 2018. doi: 10.1051/matecconf/201815606012
  15. The effect of catalyst loading on the biodiesel production from lard

    Buchori L.. Journal of Physics: Conference Series, 127 (1), 2019. doi: 10.1088/1742-6596/1295/1/012005
  16. An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies

    Kant Bhatia S.. Fuel, 127 , 2021. doi: 10.1016/j.fuel.2020.119117
  17. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy

    Okolie J.A.. International Journal of Hydrogen Energy, 2021. doi: 10.1016/j.ijhydene.2021.01.014
  18. Biofuels production from catalytic cracking of palm oil using modified hy zeolite catalysts over a continuous fixed bed catalytic reactor

    Istadi I.. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.33281
  19. Heat integration analysis of preliminary plant design of glycerol conversion into propylene glycol

    Riyanto T.. International Journal on Engineering Applications, 7 (6), 2019. doi: 10.15866/irea.v7i6.17879