Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review

DOI: https://doi.org/10.9767/bcrec.11.3.490.406-430
Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Biodiesel is an alternative biofuel that can replace diesel oil without requiring modifications to the engine and advantageously produces cleaner emissions. Biodiesel can be produced through transesterification process between oil or fat and alcohol to form esters and glycerol. The transesterification can be carried out with or without a catalyst. The catalyzed production of biodiesel can be performed by using homogeneous, heterogeneous and enzyme. Meanwhile, non-catalytic transesterification with supercritical alcohol provides a new way of producing biodiesel. Microwave and ultrasound assisted transesterification significantly can reduce reaction time as well as improve product yields. Another process, a plasma technology is promising for biodiesel synthesis from vegetable oils due to very short reaction time, no soap formation and no glycerol as a by-product. This paper reviews briefly the technologies on transesterification reaction for biodiesel production using homogeneous, heterogeneous, and enzyme catalysts, as well as advanced methods (supercritical, microwave, ultrasonic, and plasma technology). Advantages and disadvantages of each method were described comprehensively. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 17th May 2016; Revised: 20th September 2016; Accepted: 20th September 2016

How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2016). Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3): 406-430 (doi:10.9767/bcrec.11.3.490.406-430)

Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.490.406-430

Keywords

biodiesel; transesterification; advantage and disadvantage; catalytic and non-catalytic process; plasma technology

  1. Luqman Buchori 
    Diponegoro University, Indonesia
    Department of Chemical Engineering, Faculty of Engineering
  2. Istadi Istadi 
    Diponegoro University, Indonesia
    Department of Chemical Engineering, Faculty of Engineering
  3. Purwanto Purwanto 
    Diponegoro University, Indonesia
    Department of Chemical Engineering, Faculty of Engineering
  1. Ma, F., Hanna, M.A. (1999). Biodiesel production : a review. Bioresour. Technol., 70: 1-15.
  2. Boehman, A.L. (2005). Biodiesel production and processing. Fuel Process. Technol., 86(10): 1057-1058.
  3. Knothe, G., Sharp, C.A., Ryan, T.W. (2006). Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy & Fuels, 20(1): 403-408.
  4. Vyas, A.P., Verma, J.L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89(1): 1-9.
  5. Barnard, T.M., Leadbeater, N.E., Boucher, M.B., Stencel, L.M., Wilhite, B.A. (2007). Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuels, 21(11): 1777-1781.
  6. Barnwal, B.K., Sharma, M.P. (2005). Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev., 9(4): 363-378.
  7. Dmytryshyn, S.L., Dalai, A.K., Chaudhari, S.T., Mishra, H.K., Reaney, M.J. (2004). Synthesis and characterization of vegetable oil derived esters: Evaluation for their diesel additive properties. Bioresour. Technol., 92(1): 55-64.
  8. Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers. Manag., 43(17): 2349-2356.
  9. Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renew. Sustain. Energy Rev., 12(2): 542-552.
  10. Carmen, S., Vinatoru, M., Nishimura, R., Maeda, Y. (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason. Sonochem., 12: 367-372.
  11. Zhang, L., Sheng, B., Xin, Z., Liu, Q., Sun, S. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour. Technol., 101(21): 8144-8150.
  12. Cho, Y.B., Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour. Technol., 101(22): 8515-8519.
  13. Khemthong, P., Luadthong, C., Nualpaeng, W., Changsuwan, P., Tongprem, P., Viriya-empikul, N., Faungnawakij, K. (2012). Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal. Today, 190(1): 112-116.
  14. Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy, 50: 795-799.
  15. Chakraborty, R., Bepari, S., Banerjee, A. (2010). Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem. Eng. J., 165(3): 798-805.
  16. Nakatani, N., Takamori, H., Takeda, K., Sakugawa, H. (2009). Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour. Technol., 100(3): 1510-1513
  17. Wei, Z., Xu, C., Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol., 100(11): 2883-2885.
  18. Jazie, A.A., Pramanik, H., Sinha, A.S. (2013). Egg shell as eco-friendly catalyst for transesterification of rapeseed oil : optimization for biodiesel production. Int. J. Sustain. Dev. Green Econ., 2: 27-32.
  19. Berchmans, H.J., Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol., 99(6): 1716-1721
  20. Tiwari, A.K., Kumar, A., Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids : An optimized process. Biomass and Bioenergy, 31: 569-575.
  21. Correia, L.M., Saboya, R.M.A., Campelo, N.D.S., Cecilia, J.A., Rodríguez-Castellón, E., Cavalcante, C.L., Vieira, R.S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour. Technol., 151: 207-213
  22. Ilgen, O. (2011). Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol., 92(3): 452-455.
  23. Boey, P.L., Ganesan, S., Maniam, G.P., Khairuddean, M. (2012). Catalysts derived from waste sources in the production of biodiesel using waste cooking oil. Catal. Today, 190(1): 117-121.
  24. Niju, S., Meera, K.M., Begum, S., Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. J. Saudi Chem. Soc., 18: 702-706.
  25. Meher, L., Sagar, V.D., Naik, S. (2006). Technical aspects of biodiesel production by transesterification-a review. Renew. Sustain. Energy Rev., 10(3): 248-268.
  26. Canakci, M., Gerpen, J.Van. (1999). Biodiesel production via acid catalysis. Trans. ASAE (American Soc. Agric. Eng.), 42(5): 1203-1210.
  27. Freedman, B., Butterfield, R.O., Pryde, E.H. (1986). Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc., 63(10): 1375-1380.
  28. Ramadhas, A.S., Jayaraj, S., Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4): 335-340.
  29. Zheng, S., Kates, M., Dubé, M.A., McLean, D.D. (2006). Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy, 30(3): 267-272.
  30. Bhatti, H., Hanif, M., Qasim, M. (2008). Biodiesel production from waste tallow. Fuel, 87(13-14): 2961-2966.
  31. Freedman, B., Pryde, E.H., Mounts, T.L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc., 61(10): 1638-1643.
  32. Leung, D.Y.C., Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol., 87(10): 883-890.
  33. Issariyakul, T., Dalai, A.K. (2010). Biodiesel production from greenseed canola oil. Energy & Fuels, 24(7): 4652-4658.
  34. Moser, B.R., Vaughn, S.F. (2010). Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability. Biomass and Bioenergy, 34(4): 550-558.
  35. Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A Chem., 252(1-2): 107-112.
  36. Felizardo, P., Correia, M.J.N., Raposo, I., Mendes, J.F., Berkemeier, R., Bordado, J.M. (2006). Production of biodiesel from waste frying oils. Waste Manag., 26(5): 487-494.
  37. Yan, S., Salley, S.O., Simon, Ng. K.Y. (2009). Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl. Catal. A Gen., 353(2): 203-212.
  38. Kulkarni, M.G., Dalai, A.K. (2006). Waste cooking oil’s an economical source for biodiesel: A review. Ind. Eng. Chem. Res., 45(9): 2901-2913.
  39. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353-5363.
  40. Yan, S., Di Maggio, C., Mohan, S., Kim, M., Salley, S.O., Ng, K.Y.S. (2010). Advancements in heterogeneous catalysis for biodiesel synthesis. Top Catal., 53(11-12): 721-736.
  41. Maçaira, J., Santana, A., Recasens, F., Larrayoz, M.A. (2011). Biodiesel production using supercritical methanol/carbon dioxide mixtures in a continuous reactor. Fuel, 90(6): 2280-2288.
  42. Zhang, S., Zu, Y.G., Fu, Y.J., Luo, M., Zhang, D.Y., Efferth, T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour. Technol., 101(3): 931-936.
  43. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv., 28(4): 500-518.
  44. Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind. Eng. Chem. Res., 45(9): 3009-3014.
  45. Zhang, J., Chen, S., Yang, R., Yan, Y. (2010). Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 89(10): 2939-2344.
  46. Issariyakul, T., Dalai, A.K. (2014). Biodiesel from vegetable oils. Renew. Sustain. Energy Rev., 31: 446-471.
  47. Ranganathan, S.V., Narasimhan, S.L., Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour. Technol., 99(10): 3975-3981.
  48. Fukuda, H., Kond, A., Noda, H. (2001). Biodiesel fuel production by transesterification of oils : A review. J. Biosci. Bioeng., 92(5): 405-416.
  49. Boey, P-L., Maniam, G.P., Hamid, S.A. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal, 168(1): 15-22
  50. Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy, 104: 683-710.
  51. D’Ippolito, S.A., Yori, J.C., Iturria, M.E., Pieck, C.L., Vera, C.R. (2007). Analysis of a two-step, noncatalytic, supercritical biodiesel production process with heat recovery. Energy & Fuels, 21(4): 339-346.
  52. Tan, K.T., Lee, K.T. (2011). A review on supercritical fluids (SCF) technology in sustainable biodiesel production : Potential and challenges. Renew. Sustain. Energy Rev., 15(5): 2452-2456.
  53. Kusdiana, D., Saka, S. (2004). Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Appl. Biochem. Biotechnol., 113-116: 781-791.
  54. Han, H., Cao, W., Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process. Biochem., 40(9): 3148-3151.
  55. Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers. Manag., 48(3): 937-941.
  56. Yin, J-Z., Xiao, M., Song, J-B. (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Convers. Manag., 49(5): 908-912.
  57. Lidström, P., Tierney, J., Wathey, B., Westman, J. (2001). Microwave assisted organic synthesis - a review. Tetrahedron, 57(589): 9225-9283.
  58. Azcan, N., Danisman, A. (2007). Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 86(17-18): 2639-2644.
  59. Singh, A.K., Fernando, S.D., Hernandez, R. (2007). Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy & Fuels, 32(8): 1161-1164.
  60. Ji, J., Wang, J., Li, Y., Yu, Y., Xu, Z. (2006). Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 44: 411-414.
  61. Siatis, N.G., Kimbaris, A.C., Pappas, C.S., Tarantilis, P.A., Polissiou, M.G. (2006). Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. J. Am. Oil Chem. Soc., 83(1): 53-57.
  62. Kalva, A., Sivasankar, T., Moholkar, V.S. (2009). Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind. Eng. Chem. Res., 48(1): 534-544.
  63. Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P., Parvulescu, V.I., Hardacre, C. (2009). Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-Evidences of the nature of the active site and catalytic performances. J. Catal., 263(1): 56-66.
  64. Lawson, J.A., Baosman, A.A. (2005). Chemical synthesis methods using electro-catalysis. US Patent 2005/0262760 A1 (1 Dec. 2005).
  65. Lawson, J.A., Baosman, A.A.. (2010). Method of electro-catalytic reaction to produce mono alkyl esters for renewable biodiesel. US Patent 7,722,755 B2 (25 May 2010).
  66. Istadi, I., Yudhistira, A.D., Anggoro, D.D., Buchori, L. (2014). Electro-catalysis system for biodiesel synthesis from palm oil over dielectric-barrier discharge plasma reactor. Bull. Chem. React. Eng. Catal., 9(2): 111-120.
  67. Salamatinia, B., Mootabadi, H., Bhatia, S., Abdullah, A.Z. (2010). Optimization of ultrasonic-assisted heterogeneous biodiesel production from palm oil : A response surface methodology approach. Fuel Process. Technol., 91(5): 441-448.
  68. Carmen, S., Vinatoru, M., Maeda, Y., Bandow, H. (2007). Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason. Sonochem., 14(4): 413-417.
  69. Colucci, J.A., Borrero, E.E., Alape, F. (2005). Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc., 82(7): 525-530.
  70. Parkar, P.A., Choudhary, H.A., Moholkar, V.S. (2012). Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis. Chem. Eng. J., 187: 248-260.
  71. Chen, K.S., Lin, Y.C., Hsu, K.H., Wang, H.K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy, 38(1): 151-156.
  72. Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K. (2008). Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol., 89(12): 1330-1336.
  73. Encinar, J.M,, González, J.F., Martínez, G., Sánchez, N., Pardal, A. (2012). Soybean oil transesterification by the use of a microwave flow system. Fuel, 95: 386-393.
  74. Mazubert, A., Taylor, C., Aubin, J., Poux, M. (2014). Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresour. Technol., 161: 270-279.
  75. Ma, F., Clements, L.D., Hanna, M.A. (1998). The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans. ASAE (American Soc Agric Eng.), 41(5): 1261-1264.
  76. Endalew, A.K., Kiros, Y., Zanzi, R. (2011). Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy, 36(5): 2693-2700.
  77. Darnoko, D., Cheryan, M. (2000). Continuous production of palm methyl esters. J. Am. Oil Chem. Soc., 77(12): 1269-1272.
  78. Hsieh, L.S., Kumar, U., Wu, J.C.S. (2010). Continuous production of biodiesel in a packed-bed reactor using shell-core structural Ca(C3H7O3)2/CaCO3 catalyst. Chem. Eng. J., 158(2): 250-256.
  79. Feng, Y., Zhang, A., Li, J., He, B. (2011). A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour. Technol., 102(3): 3607-3609.
  80. Ren, Y., He, B., Yan, F., Wang, H., Cheng, Y., Lin, L., Feng, Y., Li, J. (2012). Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst. Bioresour. Technol., 113: 19-22.
  81. Da Silva, F.M., Pinho, D.M.M., Houg, G.P., Reis, I.B.A., Kawamura, M., Quemel, M.S.R., Montes, P.R., Suarez, P.A.Z. (2014). Continuous biodiesel production using a fixed-bed Lewis-based catalytic system. Chem. Eng. Res. Des., 92(8): 1463-1469.
  82. Yin, J-Z., Xiao, M., Wang, A-Q., Xiu, Z-L. (2008). Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Convers. Manag., 49(12): 3512-3516.
  83. Micic, R.D., Tomić, M.D., Kiss, F.E., Nikolić-Djorić, E.B., Simikić, M. (2014). Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification. Energy Convers. Manag., 86: 717-726.
  84. Jahanmiri, A,, Rahimpour, M,R,, Mohamadzadeh Shirazi, M., Hooshmand, N., Taghvaei, H. (2012). Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material. Chem. Eng. J., 191: 416-425.
  85. Rahimpour, M.R,, Jahanmiri, A., Mohamadzadeh Shirazi, M., Hooshmand, N., Taghvaei, H. (2013). Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: Effect of voltage and catalyst configuration. Chem. Eng. J., 219: 245-253.
  86. Huang, A., Xia, G., Wang, J., Suib, S.L., Hayashi, Y., Matsumoto, H. (2000). CO2 reforming of CH4 by atmospheric pressure AC discharge plasmas. J. Catal., 189(2): 349-359.
  87. Li, M., Xu, G., Tian, Y., Chen, L., Fu, H. (2004). Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J. Phys. Chem. A., 108(10): 1687-1693.
  88. Pietruszka, B., Heintze, M. (2004). Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma. Catal. Today, 90(1-2): 151-158
  89. Zhang, K., Eliasson, B., Kogelschatz, U. (2002). Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite hy promoted by a dielectric-barrier discharge. Ind. Eng. Chem. Res., 41(6): 1462-1468.
  90. Zou, J., Zhang, Y., Liu, C., Li, Y., Eliasson, B. (2003). Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges. Plasma Chem. Plasma Process., 23(1): 69-82.
  91. Caldwell, T.A., Le, H., Lobban, L.L., Mallinson, R.G. (2001). Partial oxidation of methane to form synthesis gas in a tubular AC plasma reactor. In: Spivey, J.J., Iglesia, E., and Fleisch TH, editor. Studies in Surface Science and Catalysis. Elsevier Science B.V. p. 265-270.
  92. Liu, C., Marafee, A., Mallinson, R., Lobban, L. (1997). Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. Appl. Catal. A Gen., 164(1-2): 21-33.
  93. Larkin, D.W., Zhou, L., Lobban, L.L., Mallinson R.G. (2001). Product selectivity control and organic oxygenate pathways from partial oxidation of methane in a silent electric discharge reactor. Ind. Eng. Chem. Res., 40(23): 5496-5506.
  94. Istadi, I., Amin, N.A.S. (2006). Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review. Fuel, 85(5-6): 577-592.
  95. Istadi, I., Amin, N.A.S. (2006). Hybrid artificial neural network−genetic algorithm technique for modeling and optimization of plasma reactor. Ind. Eng. Chem. Res., 45(20): 6655-6664.
  96. Kogelschatz, U. (2003). Dielectric-barrier discharges : their history, discharge physics, and industrial applications. plasma chem plasma process. Plasma Chemistry and Plasma Processing, 23(1): 1-46.
  97. Istadi, I. (2006). Catalytic conversion of methane and carbon dioxide in a conventional fixed bed and dielectric-barrier discharge plasma reactors. PhD Thesis. Universiti Teknologi Malaysia, Malaysia.
  98. Fridman, A. (2008). Plasma chemistry. New York, United States of America: Cambridge University Press.
  99. Lee, D.H., Kim, T. (2013). Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int. J. Hydrogen Energy, 38(14): 6039-6043.
  100. Kropf, M.M. (2009). Ultrasonic and microwave methods for enhacing the rate of a chemical reaction and apparatus for such methods. US Patent 2009/0000941 A1 (1 Jan. 2009).
  101. Hanh, H.D., Dong, N.T., Okitsu, K., Maeda, Y., Nishimura, R. (2007). Effects of molar ratio, catalyst concentration and temperature on transesterification of triolein with ethanol under ultrasonic irradiation. J. Japan Pet. Inst., 50(4): 195-199.
  102. Vyas, A.P., Verma, J.L,, Subrahmanyam, N. (2011). Effects of molar ratio, alkali catalyst concentration and temperature on transesterification of jatropha oil with methanol under ultrasonic irradiation. Adv. Chem. Eng. Sci., 1: 45-50.
  103. Wang, J., Huang, Q., Huang, F., Wang, J., Huang, Q. (2007). Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant. Chin. J. BioTechnol., 23(6): 1121-1128.
  104. Santos, F.F.P., Rodrigues, S., Fernandes, F.A.N. (2009). Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process. Technol., 90(2): 312-316.
  105. Badday, A.S., Abdullah, A.Z., Lee, K.T., Khayoon, M.S. (2012). Intensification of biodiesel production via ultrasonic-assisted process : A critical review on fundamentals and recent development. Renew. Sustain. Energy Rev., 16(7): 4574-4587.
  106. Ramachandran, K., Suganya, T., Gandhi, N.N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst : A review. Renew. Sustain. Energy Rev., 22: 410-418.
  107. Veljković, V.B., Avramović, J.M., Stamenković, O.S. (2012). Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives. Renew. Sustain. Energy Rev., 16: 1193-1209.
  108. Refaat, A.A., Sheltawy, S.T., Sadek, K.U. (2008). Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Technol., 5(3): 315-322.
  109. Mutyala, S., Fairbridge, C., Paré, J.R.J., Bélanger, J.M.R., Ng, S., Hawkins, R. (2010). Microwave applications to oil sands and petroleum: A review. Fuel Process. Technol., 91(2): 127-135.
  110. Motasemi, F., Ani, F.N. (2012). A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev., 16(7): 4719-4733.
  111. Sajjadi, B., Abdul Aziz, A.R., Ibrahim, S. (2014). Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renew. Sustain. Energy Rev., 37: 762-777.
  112. Groisman, Y., Gedanken, A. (2008). Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C., 112(24): 8802-8808.
  113. Manco, I., Giordani, L., Vaccari, V., Oddone, M. (2012). Microwave technology for the biodiesel production : Analytical assessments. Fuel, 95: 108-112.
  114. He, H., Sun, S., Wang, T., Zhu, S. (2007). Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. J. Am. Oil Chem. Soc., 84(4): 399-404.
  115. Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol., 91(3): 289-295.
  116. Saka, S., Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225-231.
  117. Warabi, Y., Kusdiana, D., Saka, S. (2004). Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl. Biochem. Biotechnol., 113: 793-801.
  118. Pinnarat, T., Savage, P.E. (2008). Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind. Eng. Chem. Res., 47(18): 6801-6808.
  119. Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol., 90(12): 1502-1514.
  120. Warabi, Y., Kusdiana, D., Saka, S. (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Technol., 91(3): 283-287.
  121. Bajaj, A., Lohan, P., Jha, P.N., Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B Enzym, 62(1): 9-14.
  122. Fjerbaek, L., Christensen, K.V., Norddahl, B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng., 102(5): 1298-1315.
  123. Miller, C., Austin, H., Posorske, L., Gonzlez, J. (1988). Characteristics of an immobilized lipase for the commercial synthesis of esters. J. Am. Oil Chem. Soc., 65(6): 927-931.
  124. Posorske, L.H., LeFebvre, G.K., Miller, C.A., Hansen, T.T., Glenvig, B.L. (1988). Process considerations of continuous fat modification with an immobilized lipase. J. Am. Oil Chem. Soc., 65(6): 922-926.
  125. Paiva, A.L., Balcao, V.M., Malcata, F.X. (2000). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb. Technol., 27(3-5): 187-204.
  126. Babu, N.S., Sree, R., Prasad, P.S.S., Lingaiah, N. (2008). Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 22(3): 1965-1971.
  127. Xie, W., Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A Chem., 255(1-2): 1-9.
  128. Garcia, C.M., Teixeira, S., Marciniuk, L.L., Schuchardt, U. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour. Technol., 99(14): 6608-6613.
  129. López, D.E., Goodwin, J.G., Bruce, D.A., Lotero, E. (2014). Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. A Gen., 295(2): 97-105.
  130. Marchetti, J.M., Miguel, V.U., Errazu, A.F. (2007). Possible methods for biodiesel production. Renew. Sustain. Energy Rev., 11(6): 1300-1311.
  131. McNeff, C.V., McNeff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Krohn, B.J., Fedie, R.L., Hoye, T.R. (2008). A continuous catalytic system for biodiesel production. Appl. Catal. A Gen., 343(1-2): 39-48.
  132. Islam, A., Taufiq-Yap, Y.H., Chu, C-M., Chan, E-S., Ravindra, P. (2013). Studies on design of heterogeneous catalysts for biodiesel production. Process Saf. Environ. Prot., 91(1-2): 131-144.
  133. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806.
  134. Jacobson, K., Gopinath, R., Meher, L., Dalai, A. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B Environ., 85(1-2): 86-91.
  135. Furuta, S., Matsuhashi, H., Arata, K. (2006). Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass and Bioenergy, 30(10): 870-873
  136. Chen, H., Peng, B., Wang, D., Wang, J. (2007). Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front. Chem. Eng. China, 1(1): 11-15.
  137. Srinivas, D., Satyarthi, J.K. (2011). Biodiesel production from vegetable oils and animal fat over solid acid double-metal cyanide catalysts. Catal. Surv. Asia, 15(3): 145-160.
  138. Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., Prasad, P.S.S. (2004). Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts : effect of method of preparation of the catalyst on its structural stability and reactivity. Appl. Catal. A Gen., 276(1-2): 163-168.
  139. Verhoef, M.J., Kooyman, P.J., Peters, J.A., van Bekkum, H. (1999). A study on the stability of MCM-41-supported heteropoly acids under liquid- and gas-phase esterification conditions. Microporous Mesoporous Mater., 27(2-3): 365-371.
  140. De Almeida, R.M., Noda, L.K., Gonçalves, N.S., Meneghetti, S.M.P., Meneghetti, M.R. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl. Catal. A Gen., 347(3): 100-105.
  141. Furuta, S., Matsuhashi, H., Arata, K. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun., 5(12): 721-723
  142. Mbaraka, I.K., McGuire, K.J., Shanks, B.H. (2006). Acidic mesoporous silica for the catalytic conversion of fatty acids in beef tallow. Ind. Eng. Chem. Res., 45(9): 3022-3028.
  143. Lou, W.Y., Zong, M.H., Duan, Z.Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol., 99(18): 8752-8758.
  144. Chen, G., Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresour. Technol., 102(3): 2635-2640.
  145. Komintarachat, C., Chuepeng, S. (2009). Solid acid catalyst for biodiesel production from waste used cooking oils. Ind. Eng. Chem. Res., 48(20): 9350-9353.
  146. Yan, F., Yuan, Z., Lu, P., Luo, W., Yang, L., Deng, L. (2011). Fe-Zn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil. Renew. Energy, 36(7): 2026-2031.
  147. Yan, F., Yuan, Z., Lü, P., Luo, W., Yang, L., Deng, L. (2010). Synthesis of biodiesel by Fe(II)-Zn double-metal cyanide complexes. J. Fuel Chem. Technol., 38(3): 281-286.
  148. Srilatha, K., Issariyakul, T., Lingaiah, N., Sai Prasad, P.S., Kozinski, J., Dalai,A.K. (2010). Efficient esterification and transesterification of used cooking oil using 12-tungstophosphoric acid (TPA)/Nb2O5 catalyst. Energy & Fuels, 24(13), 4748-4755.
  149. Melero, J.A., Bautista, L.F., Morales, G., Iglesias, J., Sánchez-Vázquez, R. (2010). Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chem. Eng. J., 161(3): 323-331.
  150. Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61: 276-297.
  151. Ketcong, A., Meechan, W., Naree, T., Seneevong, I., Winitsorn, A., Butnark, S., Ngamcharussrivichai, C. (2014). Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor. J. Ind. Eng. Chem., 20(4): 1665-1671.
  152. De Moura, C.V.R., De Castro, A.G., De Moura, E.M., Dos Santos, J.R., Moita Neto, J.M. (2010). Heterogeneous catalysis of babassu oil monitored by thermogravimetric analysis. Energy & Fuels, 24(15): 6527-6532.
  153. Bunyakiat, K., Makmee, S., Sawangkeaw, R., Ngamprasertsith, S. (2006). Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy & Fuels, 20(8): 812-817.
  154. Noureddini, H., Gao, X., Philkana, R.S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol., 96(7): 769-777.
  155. Darnoko, D., Cheryan, M. (2000). Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc., 77(12): 1263-1267.
  156. Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci., 31: 466-487.
  157. Schuchardt, U., Sercheli, R., Matheus, R. (1998). Transesterification of vegetable oils : a review. J. Braz. Chem. Soc., 9(1): 199-210.
  158. Liu, K.S. (1994). Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J. Am. Oil Chem. Soc., 71(11): 1179-1187.
  159. Zhang, Y., Dube, M.A., McLean, D.D., Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol., 89(1): 1-16
  160. Kusdiana, D., Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5): 693-698.
  161. Shah, S., Sharma, S., Gupta, M.N. (2004). Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy & Fuels, 18(15): 154-159.
  162. Nelson, L.A., Foglia, T.A., Marmer, W.N. (1996). Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc., 73(8): 1191-1195.
  163. Kumari, V., Shah, S., Gupta, M.N. (2007). Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels, 21(12): 368-372.
  164. Al-Zuhair, S. (2005). Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: A kinetics study. Biotechnol. Prog., 21(5): 1442-1448.
  165. Du, W., Xu, Y.Y., Liu, D.H., Li, Z.B. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B Enzym., 37(1-6): 68-71.
  166. Suarez, P.A.Z., Meneghetti, S.M.P., Meneghetti, M.R., Wolf, C.R. (2007). Transformation of triglycerides into fuels, polymers and chemicals some applications of catalysis in oleochemistry. Quim. Nova., 30(3): 667-676.
  167. Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J., 116(1): 61-66.
  168. Buchori, L., Istadi, I., Purwanto, P., Kurniawan, A., Maulana, T.I. (2016). Preliminary testing of hybrid catalytic-plasma reactor for biodiesel production using modified-carbon catalyst. Bull. Chem. React. Eng. Catal., 11 (1): 59-65.