One-pot Synthesis of Carbon-doped TiO2 with Bimetallic Ni-Ag co-catalysts in Photodegradation of Methylene Blue under UV and Visible Irradiation

Kurnia Putri  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Annisa Annisa  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Sadang Husain  -  Department of Physics, Lambung Mangkurat University, Indonesia
*Rodiansono Rodiansono  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Received: 1 May 2019; Revised: 20 Aug 2019; Accepted: 23 Aug 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Carbon modified-titanium dioxide (@C-TiO2) was prepared by one-pot procedure from TiCl4 and glucose under hydrothermal conditions at 150 ºC for 24 hours. The obtained @C-TiO2 was employed as support for Ni-Ag(3.0)@C-TiO2 nanocomposite (3.0 is the Ni/Ag molar ratio). The synthesized catalysts were characterized by means of XRD and UV-Vis DRS Spectroscopy. The XRD patterns of @TiO2 show the brookite as the main phase, meanwhile the main phase in the @C-TiO2, Ni-Ag(3.0)@TiO2 and Ni-Ag(3.0)@C-TiO2 nanocomposites were anatase. The band gap of the TiO2 sample slightly shifted to the visible range after the addition of C dopant or Ni-Ag(3.0) co-catalyst as indicated by UV-Vis DRS spectra. Ni-Ag(3.0)@C-TiO2 catalyst showed high photocatalytic activity for photodegradation of MB under both UV and visible irradiations at 60 ºC within 2 hours with maximum MB conversion of 67.5% and 54.1%, respectively. The synergistic action of C dopant or Ni-Ag(3.0) co-catalyst is believed to be important in the improvement of photocatalytic activity of @TiO2. Copyright ©2019 BCREC Group. All rights reserved


Keywords: C-doped TiO2; bimetallic Ni-Ag co-catalyst; methylene blue; photodegradation

Article Metrics:

  1. Fujishima, A., Rao, T.N., Tryk, D.A. (2000). Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21.
  2. Chen, X., Shen, S., Guo, L., Mao, S.S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503–6570.
  3. Kudo, A., Miseki, Y. (2009). Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Review, 38, 253–278.
  4. Khan, S.U.M., Al-Shahry, M., Ingler., W.B. (2002). Efficient Photochemical Water Splitting by A Chemically Modified n-TiO2. Science, 297(5590), 2243–2245.
  5. Vinodgopal, K., Wynkoop, D.E., Kamat, P.V. (1996). Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environ. Sci. Technol., 30, 1660-1666.
  6. Zhao, D., Chen, C.C., Wang, Y., Ma, W.H., Zhao, J.C., Rajh, T., Zang, L. (2008). Enhanced Photocatalytic Degradation of Dye Pollutants under Visible Irradiation on Al(III)-Modified TiO2: Structure, Interaction, and Interfacial Electron Transfer. Environ. Sci. Technol., 42, 308-314.
  7. Fujishima, A., Zhang, X., Tryk, D.A. (2008). TiO2 photocatalysis and Related Surface Phenomena. Surface Science Reports, 63(12), 515–582.
  8. Choi, W., Termin, A., Hoffmann, M.R. (1994). The Role of Metal Ion
  9. Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem., 98, 13669-13679.
  10. Khan, M.A., Woo, S.I., Yang, O.B. (2008). Hydrothermally Stabilized Fe (III) Doped Titania Active Under Visible Light for Water Splitting Reaction. International Journal of Hydrogen Energy, 33(20), 5345-5351.
  11. Dholam, R., Patel, N., Adami, M., Miotello, A. (2009). Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-doped TiO2 Composite Thin Films Photocatalyst. International Journal of Hydrogen Energy, 34, 5337-5346.
  12. Li, Z., Shen, W., He, W., Zu, X. (2008). Effect of Fe-doped TiO2 Nanoparticle Derived from Modified Hydrothermal Process on the Photocatalytic Degradation Performance on Methylene Blue. Journal of Hazardous Materials, 155, 590–594.
  13. Wang, H., Lewis, J.P. (2006). Second-Generation Photocatalytic Materials: Anion-doped TiO2. Journal of Physics: Condensed Matter, 18(2), 421–434.
  14. Chen, D., Jiang, Z., Geng, J., Wang, Q., Yang, D. (2007). Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-light Photocatalytic Activity. Industrial and Engineering Chemistry Research, 46(9), 2741–2746.
  15. Zhong, J., Chen, F., Zhang, J. (2010). Carbon-Deposited TiO2 : Synthesis, Characterization, and Visible Photocatalytic Performance. The Journal of Physical Chemistry C, 114(2), 933–939.
  16. Teng, F., Zhang, G., Wang, Y., Gao, C., Chen, L., Zhang, P., Zhang, Z., Xie,E. (2014). The Role of Carbon in The Photocatalytic Reaction of Carbon/TiO2 Photocatalysts. Applied Surface Science, 320, 703–709.
  17. Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., Li, Z. (2014). Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnation Diatomite. Advances in Materials Science & Engineering, 1, 1-7.
  18. Jing, D., Zhang, Y., Guo, L. (2005). Study On The Synthesis of Ni Doped Mesoporous TiO2 and Its Photocatalytic Activity for Hydrogen Evolution in Aqueous Methanol Solution. Chemical Physics Letters, 415, 74–78.
  19. Yang, J., Wang, D., Han, H., Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photo electrocatalysis. Accounts of Chemical Research, 46(8), 1900-1909.
  20. Zhang, D. (2011). Chemical Synthesis of Ni/TiO2 Nanophotocatalyst for UV/Visible Light Assisted Degradation of Organic Dye in Aqueous Solution. Journal of Sol-Gel Science and Technology, 58(1), 312–318.
  21. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M., Bae, Y.Cer. (2004). Comparison of Ag Deposition Effects on The Photocatalytic Activity of Nanoparticulate TiO2 Under Visible and UV Light Irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163(1-2), 37–44.
  22. Aritofa, R. (2014). Synthesis and Characterization of Ni-Ag(0.75) Nanoalloy Catalyst Supported on Al2O3 : Variation of Ethylene Glycol. Skripsi Program Strata-1, Universitas Lambung Mangkurat, Banjarbaru.
  23. Rodiansono, R., Astuti, M.D., Santoso, U.T., Irwan, A., Mujiyanti, D.R., Aritofa, R. Karlini, K., Abdurahman, A., Maulana, A. (2018). Controlled-Selectivity of Bimetallic Ni-Ag Alloy Catalysts in Hydrogenation of Furfural to Furfuryl Alcohol and Tetrahydrofurfuryl Alcohol. Sains dan Terapan Kimia. 12(2), 41- 53.
  24. Jiao, W., Xie, Y., Chen, R., Zhen, C., Liu, G., Ma, X., Cheng, H.M. (2013). Synthesis of Mesoporous Single Crystal Rutile TiO2 with Improved Photocatalytic and Photoelectrochemical Activities. Chem. Commun., 49, 11770-11772.
  25. Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., Zhou, Z. (2007). Low Temperature Preparation and Visible Light Photocatalytic Activity of Mesoporous Carbon-doped Crystalline TiO2. Applied Catalysis B: Environmental, 69(3-4), 138–144.
  26. Powder diffraction files. (1997). JCPDS-International center for diffraction data (ICDD).
  27. Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H. (2003). Facile Alcohothermal Synthesis, Size-dependent Ultraviolet Absorption, and Enhanced CO Conversion Activity of Ceria Nanocrystals. J. Phys. Chem. B., 107, 10159–10167.
  28. Ng, J., Xu, S., Zhang, X., Yang, H.Y., Sun, D.D. (2010). Hybridized Nanowires and Cubes: A Novel Architecture of A Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting. Adv. Funct. Mater., 20, 4287–4294.
  29. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H. Li, C. (2014). Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chem. Rev., 114, 9987−10043.
  30. Pal, U., Ghosh, S., Chatterjee, D. (2012). Effect of Sacrificial Electron Donors on Hydrogen Generation Over Visible Light-Irradiated Nonmetal-doped TiO2 Photocatalysts. Transition Metal Chemistry, 37(1), 93–96.
  31. Silva, C.G., Jua´rez, R., Marino, T., Molinari, R., Garcı´a, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc., 133, 595–602.

No citation recorded.