Ruthenium-doped Titania-pillared Clay for The Selective Catalytic Oxidation of Cyclohexene: Influence of Ru Loading

Ahmed Dali  -  Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science, Abou Bakr Belkaϊd University, Algeria
*Ilhem Rekkab-Hammoumraoui orcid  -  Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science, Abou Bakr Belkaϊd University, Algeria
Sanaa El Korso  -  Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science, Abou Bakr Belkaϊd University, Algeria
Souheyla Boudjema  -  Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science, Abou Bakr Belkaϊd University, Algeria
Abderrahim Choukchou-Braham  -  Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science, Abou Bakr Belkaϊd University, Algeria
Received: 22 Apr 2019; Revised: 11 Jul 2019; Accepted: 16 Jul 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

A series of ruthenium-based catalysts supported on acid-activated montmorillonite (PILC) and interspersed with titanium (Ru/Ti-PILCs) were prepared with various amounts of ruthenium. Their catalytic performances in the selective oxidation of cyclohexene, using tert-butylhydroperoxide (TBHP) as oxidant were checked. The clay structure modification by acid activation and impregnation of transition metals resulted in an enhanced Lewis and Bronsted acidities. The Ru/Ti-PILCs materials were characterized using X-ray diffraction (XRD), surface area and pore volume measurements, surface acidity followed by Fourier transform infrared (FTIR) spectroscopy, chemical analysis, and Scanning Electron Microscopy (SEM). It was found that all catalysts can selectively oxidize cyclohexene through allylic oxidation leading mainly to 2-cyclohexene-1-one (Enone) as the major product, and 2-cyclohexene-1-ol (Enol) as secondary product. With the 5 %Ru/Ti-PILC, it was possible to reach 59 % cyclohexene total conversion, and 87 % selectivity into 2-cyclohexene-1-one and 13 % selectivity into 2-cyclohexene-1-ol. Copyright © 2019 BCREC Group. All rights reserved


Keywords: Cyclohexene; Pillared clay; Ruthenium; Selective oxidation; TBHP

Article Metrics:

  1. Murray, H.H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17: 207-221.
  2. Vaccari, A. (1999). Clays and catalysis: a promising future. Applied Clay Science, 14: 161-98.
  3. Dal Bosco, S.M., Jimenez, R.S., Vignado, C., Fontana, J., Geraldo, B., Figueiredo, F.C.A., Mandelli, D., Carvalho, W.A. (2006). Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption, 12: 133-146.
  4. Gil, A., Gandia, L.M., Vicente M.A. (2000). Recent Advances in the Synthesis and Catalytic Applications of Pillared Clays. Catalysis Review, 42: 145-212.
  5. Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41: 53 -71.
  6. Vaughan, D.E.W. (1988). Pillared clays - A historical perspective. Catalysis Today, 2: 187-98.
  7. Figueras, F. (1988). Pillared Clays as Catalysts. Catalysis Review, 30: 457-499.
  8. Lambert, J.F., Poncelet, G. (1997). Acidity in pillared clays: origin and catalytic manifestations. Topics in Catalysis, 4: 43-56.
  9. Pinnavaia, T.J. (1983). Intercaled Clay Catalysts. Science, 220: 365-371.
  10. Basoglu, F.T., Balci, S. (2016). Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation. Journal of Molecular Structure, 1106: 382-389.
  11. Bineesh, K.V., Kim, D.K., Cho, H.J., Park D.W. (2010). Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S. Journal of Industrial and Engineering Chemistry, 16: 593-597.
  12. Brahimi, S., Boudjema, S., Rekkab, I., Choukchou-Braham, A., Bachir, R. (2015). Synthesis and Catalytic Activity of Vanadia-Doped Iron-Pillared Clays for Cyclohexene Epoxidation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6: 63-76.
  13. Chmielarz, L., Kowalczyk, A., Wojciechowska, M., Boroń, P., Dudek, B., Michalik, M. (2014). Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chemical Paper, 68: 1219–1227.
  14. Bahranowski, K., Włodarczyk, W., Wisła-Walsh, E., Gaweł, A., Matusik, J., Klimek, A., Gil, B., Michalik-Zym, A., Dula, R., Socha, R.P., Serwicka, E.M. (2015). [Ti,Zr]-pillared montmorillonite – A new quality with respect to Ti- and Zr-pillared clays. Microporous Mesoporous Materials, 202: 155-164.
  15. Tomul, F., Basoglu, F.T., Canbay, H. (2016). Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution. Applied Surface Science, 360: 579-593.
  16. Occelli, M.L., Tindwa, R.M. (1983). Physicochemical properties of montmorilloniteinterlayed with cationic oxyaluminumpilllars. Clays and Clay Minerals, 31: 22-28.
  17. Zhao, D., Yang, Y., Guo, X. (1995). Synthesis and characterization of hydroxy-CrAI pillared clays. Zeolites, 15: 58-66.
  18. Jiang, D., Mallat, T., Meier, D.M., Urakawa, A., Baiker, A. (2010). Copper metal–organic framework: Structure and activity in the allylic oxidation of cyclohexene with molecular oxygen. Journal of Catalysis, 270: 26-33.
  19. Parra da Silva, F., Gonçalves, R.V., Rossi, L.M. (2017). Magnetically recoverable copper oxide catalysts for aerobic allylic oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 426: 534–541.
  20. Rekkab-Hammoumraoui, I., Khaldi, I., Choukchou-Braham, A., Bachir, R. (2013). TiO2–SiO2 mixed oxides: Xerogel catalyst for the Selective Epoxidation of cyclohexene. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4: 935-946.
  21. Driss, L., Choukchou-Braham, A., Kappenstein, C., Pirault-Roy, L. (2012). Synthesis, characterization and activity in cyclohexene epoxidation of V2O5–TiO2 anatasexerogel. Journal of Sol-Gel Science and Technology, 64: 637-642.
  22. Ameur, N., Bedrane, S., Bachir, R., Choukchou-Braham., A. (2013). Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 374-375: 1-6.
  23. EL-Korso, S., Rekkab, I., Choukchou-Braham, A., Bedrane, S., Pirault-Roy, L.,Kappenstein, C. (2012). Synthesis of vanadium oxides 5 wt.%VO2–MxOy by sol–gel process and application in cyclohexene epoxidation. Bulletin of Material Science, 35: 1187-1194.
  24. El-Korso, S., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). The effect of redox properties of ceria-supported vanadium oxides in liquid phase cyclohexene oxidation. RSC Advances, 5: 63382-63392.
  25. Hakat, Y., Kotbagi, T.V., Bakker, M.G. (2016). Silver supported on hierarchically porous SiO2 and Co3O4 monoliths: Efficient heterogeneous catalyst for oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 411: 61-71.
  26. Cao, Y., Yu, H., Wang, H., Peng, F. (2017). Solvent effect on the allylic oxidation of cyclohexene catalyzed by nitrogen doped carbon nanotubes. Catalysis Communications, 88: 99-103.
  27. El-Korso, S., Khaldi, I., Bedrane, S., Choukchou-Braham, A., Thibault-Starzyk, F., Bachir, R. (2014). Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide: Epoxidation versus allylic oxidation. Journal of Molecular Catalysis A: Chemical, 394: 89-96.
  28. Ghiaci, M., Aghabarari, B., Botelho do Rego, A.M., Ferraria, A.M., Habibollahi, S. (2011). Efficient allylic oxidation of cyclohexene catalyzed by trimetallic hybrid nano-mixed oxide (Ru/Co/Ce). Applied Catalysis A: General, 393: 225-230.
  29. Godhani, D.R., Nakum, H.D., Parmar, D.K., Mehta, J.P., Desai, N.C. (2016). Tuning of the reaction parameters to optimize allylic oxidation of cyclohexene catalyzed by zeolite-Y entrapped transition metal complexes. Journal of Molecular Catalysis A: Chemical, 415: 37-55.
  30. Rutkowska-Zbik, D., Witko, M., Serwicka, E.M. (2011). Allylic oxidation of cyclohexene catalyzed by manganese porphyrins: DFT studies. Catalysis Today,169: 10-15.
  31. Ganji, S., Bukya, P., Vakati, V., Rao, K.S.R., Burri, D.R. (2013). Highly efficient and expeditious PdO/SBA-15 catalysts for allylic oxidation of cyclohexene to cyclohexenone. Catalysis Science & Technology, 3: 409-414.
  32. Skobelev, I.Y., Sorokin, A.B., Kovalenko, K.A., Fedin, V.P., Kholdeeva, O.A. (2013). Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis, 298:61-69.
  33. Chatterjee, D., Basak, S., Mitra, A., Sengupta, A., Le Bras, J., Muzart, J. (2005). Synthesis and catalytic activity of a novel ruthenium(III) complex containing a sugar-based ligand. Catalysis Communications, 6: 459-461.
  34. de Souza, V.R., Nunes, G.S., Rocha, R.C., Toma, H.E. (2003). Spectroscopy, electrochemistry and catalytic properties of ruthenium II complexes containing the tetradentate Schiff base ligand N,N′-bis(7-methyl-2-pyridylmethylene)-1,3-diiminopropane. Inorganica Chimica Acta, 348: 50-56.
  35. Dali, A., Rekkab-Hammoumraoui, I., Choukchou-Braham, A., Bachir, R. (2015). Allylic oxidation of cyclohexene over ruthenium-doped titanium-pillared clay. RSC Advances, 5: 29167-29178.
  36. Bineesh, K.V., Kim, D.K., Kim, M.I.L., Park, D.W. (2011). Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Applied Clay Science, 53: 204-211.
  37. Bernas, A., Kumar, N., Laukkanen, P., Vayrynen, J., Salmi, T., Murzin, D.Y. (2004). Influence of ruthenium precursor on catalytic activity of Ru/Al2O3 catalyst in selective isomerization of linoleic acid to cis-9,trans-11- and trans-10,cis-12-conjugated linoleic acid. Applied Catalysis A: General, 267: 121-33.
  38. Rekkab-Hammoumraoui, I., Choukchou-Braham, A., Pirault-Roy, L., Kappenstein, C. (2011). Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by tert-butyl hydroperoxide over Pt/oxide catalysts. Bulletin of Material Science, 34: 1127-1135.
  39. Romero, A., Dodorado, F., Asencio, I., Garcia, P.B., Valverde, J.L. (2006). Ti-pillared clays: synthesis and general characterization. Clays and Clay Minerals, 54:737-747.
  40. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E. (1940). Theory of the van der Waals adsorption of gases. Journal of American Chemical Society, 62: 1723-1732.
  41. Kim, M., Lee, G., Kim, D.W., Kang, D.H., Park, D.W. (2014). Production of elemental sulfur and ammonium thiosulfate by H2S oxidation over Nb2O5 supported on Fe-pillared clay. Korean Journal of Chemical Engineering, 31: 2162-2169.
  42. Bineesh, K.V., Kim, D.K., Kim, D.W., Cho, H.J., Park, D.W. (2010). Selective catalytic oxidation of H2S to elemental sulfur over V2O5/Zr-pillared montmorillonite clay. Energy & Environmental Science, 3: 302-310.
  43. Sahel, K., Bouhent, M., Belkhadem, F., Ferchichi, M., Dappozze, F., Guillard, C., Figueras, F. (2014). Photocatalytic degradation of anionic and cationic dyes over TiO2 P25, and Ti-pillared clays and Ag-doped Ti-pillared clays. Applied Clay Science, 95: 205-210.
  44. Binitha, N.N., Sugunan, S. (2006). Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 93:,82-89.
  45. Poppl, L., Toth, E., Toth, M., Paszli, I., Izvekov, V., Gabor, M. (1998). Synthesis and Characterizations of hydroxy-Aluminum cross-linked montmorillonite. Journal of Thermal Analysis, 53: 585-596.
  46. Carriazo, J.G., Moreno-Forero, M., Molina, R.,A., Moreno, S. (2010). Incorporation of titanium and titanium–iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50: 401-408.
  47. Kannan, S.K., Sundrarajan, M. (2015). Green synthesis of ruthenium oxide nanoparticles: Characterization and its antibacterial activity. Advanced Powder Technology, 26: 1505-1511.
  48. Jeng, J.S., Lin, Y.T., Chen, J.S. (2010) Preparation and characterization of transparent semiconductor RuO2–SiO2 films synthesized by sol–gel route. Thin Solid Films, 518: 5416-5420.
  49. Ismail, A.A., Bahnemann, D.W., Al-Sayari, S.A. (2012). Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Ptphotodeposited onto mesoporous RuO2-TiO2nanocomposites. Applied Catalysis A: General, 431-432:,62-68.
  50. Hosokawa, S., Fujinami, Y., Kanai, H. (2005). Reactivity of Ru=O species in RuO2/CeO2 catalysts prepared by a wet reduction method. Journal of Molecular Catalysis A: Chemical, 240: 49-54.
  51. Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97: 2373-2419.
  52. Chae, H.J., Nama, I.S., Ham, S., Bong Hong, S. (2001). Physicochemical characteristics of pillared interlayered clays. Catalysis Today, 68: 31-40.
  53. Guisnet, M., Ayrault, P., Coutanceau, C., Alvarez, M.F., Datkac, J. (1997). Acid properties of dealuminated beta zeolites studied by IR spectroscopy. Journal of Chemical Society, Faraday Transactions, 93: 1661-1665.
  54. Bineesh, K.V., Kim, S.Y., Jermy, B.R., Park, D.W. (2009). Synthesis, characterization and catalytic performance of vanadia-doped delaminated zirconia-pillared montmorillonite clay for the selective catalytic oxidation of hydrogen sulfide. Journal of Molecular Catalysis A: Chemical, 308: 150-158.
  55. Sorlino, M., Busca, G. (1984). FT-IR Study of the acid sites on the surface of silica supported ruthenium oxide. Applications of Surface Science, 18: 268-2672.
  56. Alotaibi, M.T., Taylor, M.J., Liu, D., Beaumont, S.K., Kyriakou, G. (2016). Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors. Surface Science, 646: 179-185.
  57. Zhou, J., Cao, S., Yang, X., Chen, Q., Luo, X., Zheng, M. (2017). Highly selective allylic oxidation of cyclohexene over molybdenum-doped manganese oxide catalysts. Reaction Kinetics, Mechanisms and Catalysis, 120: 567–578.
  58. Qadir, M.I., Scholten, J.D., Dupont, J. (2014). TiO2nanomaterials: Highly active catalysts for the oxidation of hydrocarbons. Journal of Molecular Catalysis A: Chemical, 383-384: 225-230.
  59. Corma, A., Garcıa, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions: From Homogeneous to Heterogeneous Systems. Chemical Reviews, 102: 3837-3892.
  60. Ding, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., Zhu, H.Y. (2001). Porous Clays and Pillared Clays-Based Catalysts. Part 2: A Review of the Catalytic and Molecular Sieve Applications. Journal of Porous Materials, 8: 273-293.
  61. Cai, X., Wang, H., Zhang, Q., Tong, J., Lei, Z. (2014). Magnetically recyclable core–shell Fe3O4@chitosan-Schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions. Journal of Molecular Catalysis A: Chemical, 383-384:217-224.
  62. Silva, F.P., Jacinto, M.J., Landers, R., Rossi, L.M. (2010). Selective Allylic oxidation of Cyclohexene by a Magnetically Recoverable Cobalt Oxide Catalyst. Catalysis Letters, 141: 432-437.
  63. Jorda, E., Tuel, A., Teissier, R., Kervennal, J. (1998). Synthesis, Characterization, and Activity in the Epoxidation of Cyclohexene with Aqueous H2O2 of Catalysts Prepared by Reaction of TiF4 with Silica. Journal of Catalysis, 175: 93-107.
  64. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107: 14–20.
  65. Ghiaci, M., Aghabarari, B., Botelho do Rego, A.M., Ferraria, A.M., Habibollahi, S. (2011). Efficient allylic oxidation of cyclohexene catalyzed by trimetallic hybridnano-mixed oxide (Ru/Co/Ce). Applied Catalysis A: General, 393: 225-230.
  66. Kanmani, A.S., Vancheesan, S. (1998). Oxidation of cyclohexene and styrene catalysed by ruthenium(II) complexesunder homogeneous conditions. Recent Advances in Basic and Applied Aspects of Industrial Catalysis Studies in Surface Science and Catalysis, 113: 285-292.
  67. Azzi, H., Rekkab-Hammoumraoui, I., Chérif-Aouali, L., Choukchou-Braham, A. (2019). Mesoporous Co3O4 as a New Catalyst for AllylicOxidation of Cyclohexene. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 112-123.
  68. Canepa, A.L., Chanquia, C.M., Eimer, G.A., Casuscelli, S.G. (2013). Oxidation of olefins employing mesoporous molecular sieves modified with copper. Applied Catalysis A: General, 462– 463: 8– 14.
  69. Chanquia, C.M., Canepa, A.L., Bazan-Aguirre, J., Sapag, K., Rodriguez-Castellon, E., Reyes, P., Herrero, E.R., Casuscelli, S.G., Eimer, G.A. (2012). Copper-containing spherical mesoporous silicates prepared by template-ion exchange: A multitechnique characterization and oxidation properties. Microporous and Mesoporous Materials, 151: 2-12.
  70. Chanquia, C.M., Canepa, A.L., Winkler, E.L., Rodriguez-Castellon, E., Casuscelli, S.G., Eimer, G.A. (2016). Nature of active vanadium nanospecies in MCM-41 type catalysts for olefins oxidation. Materials Chemistry and Physics, 175: 172-179.

No citation recorded.