A Review on Catalytic Membranes Production and Applications

*Heba Abdallah  -  Chemical Engineering and Pilot Plant Department, Engineering Research Division, , Egypt
Received: 1 Apr 2016; Revised: 14 Feb 2017; Accepted: 22 Feb 2017; Published: 1 Aug 2017; Available online: 8 May 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved.

Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017

How to Cite: Abdallah, H. (2017). A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 136-156 (doi:10.9767/bcrec.12.2.462.136-156)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

Keywords: Catalytic membranes; Membrane reactor; Preparation and application; Membrane technology
Funding: National Resrearch Centre, Egypt

Article Metrics:

  1. Lalia, B.S., Kochkodan, V., Hashaikeh, R., Hilal, N. (2013). A Review on Membrane Fabrication Structure, Properties and Performance Relationship. Desalination, 326: 77-95
  2. Westermann, T., Melin, T. (2009). Flow through Catalytic Membrane Reactors: Principles and Applications. Chemical Enginee-ring and Processing: Process Intensification, 48: 17-28
  3. Wang, B., Sun, C., Li, Y., Zhao, L., Ho, W.S.W., Dutta, P.K. (2015). Rapid Synthesis of Faujasite / Polyethersulfone Composite Membrane and Application for CO2/N2 Separation. Microporous and Mesoporous Materials, 208: 72-82
  4. Drioli, E., Curcio, E., Di Profio, G. (2005). State of Art and Recent Progresses in Membrane Contactors. Chemical Engineering Research and Design, 83: 223-233
  5. Westermann, T., Kopriwa, N., Schröder, A., Melin, T. (2010). Effective Dispersion Model for Flow through Catalytic Membrane Reactors Combining Axial Dispersion and Pore Size Distribution. Chemical Engineering Science, 65: 1609-1615
  6. Gu, Y., Favier, I., Pradel, C., Gin, D.L., Lahitte, J.F., Noble, R.D., Gómez, M., Remigy, J.C. (2015). High Catalytic Efficiency of Palladium Nanoparticles Immobilized in a Polymer Membrane Containing Poly (Ionic Liquid) in Suzuki-Miyaura Cross-Coupling Reaction. Journal of Membrane Science, 492: 331-339
  7. Bhattacharya, A., Misra, B.N. (2004). Grafting: A Versatile Means to Modify Polymers Techniques, Factors and Applications. Progress to Polymer Science, 29: 767-814
  8. Liu, S.X., Kim, J.T. (2011). Characterization of Surface Modification of Polyethersulfone Membrane. Journal of Adhesion Science and Technology, 25: 193-212
  9. Wu, Z., Wang, B., Li, K. (2012). A Novel Dual-Layer Ceramic Hollow Fiber Membrane Reactor for Methane Conversion. Journal of Membrane Science, 352: 63-70
  10. Vatanpoura, V., Madaenia, S.S., Khataeeb, A. R., Salehia, E., Zinadinia, S., Monfared, H.A. (2012). TiO2 Embedded Mixed Matrix PES Nanocomposite Membranes: Influence of Different Sizes and Types of Nanoparticles on Antifouling and Performance. Desalination, 292: 19-29
  11. Zhao, X., Cheng, J., Chen, S., Zhang, J., Wang, X. (2010). Hydrophilic Modification of Poly (Vinylidene Fluoride) (PVDF) by Insitu Polymerization of Methyl Methacrylate (MMA) Monomer. Colloid and Polymer Science, 288: 1327-1332
  12. Macanas, J., Ouyang, L., Bruening, M.L., Munoz, M., Remigy, J.C., Lahitte, J.F. (2010). Development of Polymeric Hollow Fiber Membranes Containing Catalytic Metal Nanoparticles. Catalysis Today, 156: 181-186
  13. Smuleac, V., Varma, R., Sikdar, S., Bhattacharyya, D. (2011). Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics. Journal of Membrane Science, 379: 131-137
  14. Vanherck, K., Verbiest, T., Vankelecom, I. (2012). Comparison of Two Synthesis Routes to Obtain Gold Nanoparticles in Polyimide. Journal of Physical Chemistry C, 116: 115-125
  15. Alpatova, A., Mohamed Meshref, M., McPhedran, K.N., Gamal El-Din, M. (2015). Composite Polyvinylidene Fluoride (PVDF) Membrane Impregnated with Fe2O3 Nanoparticles and Multiwalled Carbon Nanotubes for Catalytic Degradation of Organic Contaminants. Journal of Membrane Science, 490: 227-235
  16. Gui, M., Smuleac, V., Ormsbee, L.E, Sedlak, D.L., Bhattacharyya, D. (2012). Iron Oxide Nanoparticle Synthesis in Aqueous and Membrane Systems for Oxidative Degradation of Trichloroethylene from Water. Journal of Nanoparticle Research, 14: 1-16
  17. Alpatova, A.L., Davies, S.H., Masten, S.J. (2013). Hybrid Ozonation-Ceramic Membrane Filtration of Surface Waters: The Effect of Water Characteristics on Permeate Flux and the Removal of DBP Precursors, Dicloxacillin and Ceftazidime. Separation and Purification Technology, 107: 179-186
  18. Corneal, L.M., Baumann, M.J., Masten, S.J., Davies, S.H.R., Tarabara, V.V., Byun, S. (2011). Mn Oxide Coated Catalytic Membranes for Hybrid Ozonation Membrane Filtration: Membrane Microstructural Characterization. Journal of Membrane Science, 369: 182-187
  19. Kim, E.S., Liu, Y., Gamal El-Din, M. (2013). An In-Situ Integrated System of Carbon Nanotubes Nanocomposite Membrane for Oil Sands Process-Affected Water Treatment. Journal of Membrane Science, 429: 418-427
  20. Song, H., Shao, J., He, Y., Liu, B., Zhong, X. (2012). Natural Organic Matter Removal and Flux Decline with PEG-TiO2-doped PVDF Membranes by Integration of Ultrafiltration with Photo Catalysis. Journal of Membrane Science, 405: 48-56
  21. Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., Li, B., Liu, L., Qian, X. (2013). Effect of Graphite Oxide and Multi-Walled Carbon Nanotubes on the Microstructure and Performance of PVDF Membranes. Separation and Purification Technology, 103: 78-83
  22. Khraisheh, M., Atieh, M.A., Hilal, N. (2016). Fabrication and Antifouling Behaviour of a Carbon Nanotube Membrane. Materials and Design, 89: 549-558
  23. Liu, B., Chen, C., Li, T., Crittenden, J., Chen, Y. (2013). High Performance Ultrafiltration Membrane Composed of PVDF Blended with Its Derivative Copolymer PVDF-g-PEGMA. Journal of Membrane Science, 445: 66-75
  24. Xu, Y.J., Zhuang, Y., Fu, X. (2010). New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nano Tubes: A Case Study on Degradation of Benzene and Methyl Orange. Journal of Physical Chemistry C, 114: 2669-2676
  25. Estrada-Villegas, G.M., Bucio, E. (2013). Comparative Study of Grafting a Polyampholyte in a Fluoropolymer Membrane by Gamma Radiation in One or Two-Steps. Radiation Physics and Chemistry, 92: 61-65
  26. Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 45: 4015-4039
  27. Di Lena, F., Matyjaszewski, K. (2010). Transition Metal Catalysts for Controlled Radical Polymerization. Progress to Polymer, 5: 959-1021
  28. Moreno, N.G., Gervasio, D., García, A.G., Francisco, J., Robles, P. (2015). Polybenzimidazole-multiwall Carbon Nanotubes Composite Membranes for Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 300: 229-237
  29. Amrit, C., Hattenberger, M., El-Kharouf ,A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W. (2013). High Temperature (HT) Polymer Electrolyte Membrane Fuel Cells (PEMFC)-A Review. Journal of Power Sources, 231: 264-278
  30. Yee, R.S., Zhang, K., Ladewig, P.B. (2013). The Effects of Sulfonated Poly (Ether Ether Ketone) Ion Exchange Preparation Conditions on Membrane Properties. Membranes, 3: 182-195
  31. Park, J.T., Koh, J.H., Roh, D.K., Shul, Y.G., Kim, J.H. (2011). Proton-conducting Nanocomposite Membranes Based on P(VDF-co-CTFE)-g-PSSA Graft Copolymer and TiO2-PSSA Nanoparticles. International Journal of Hydrogen Energy, 36: 1820-1827
  32. Chi, W., Patel, R., Hwang, H., Shul, Y., Kim, J. (2012). Preparation of Poly(vinylidene fluoride) Nanocomposite Membranes Based on Graft Polymerization and Sol-Gel Process for Polymer Electrolyte Membrane Fuel Cells. Journal of Solid State Electrochemistry, 16: 1405-1414
  33. Seo, J.A., Kim, Y.W., Roh, D.K., Shul, Y.G., Kim, J.H. (2011). Proton Conducting Grafted/Crosslinked Membranes Prepared from Poly (Vinylidene Fluoride-Co-Chlorotrifluoroethylene) Copolymer. Polymers Advances Technologies, 22: 1434-1441
  34. Ran, J., Wu, L., Zhang, Z., Xu, T. (2014). Atom Transfer Radical Polymerization (ATRP): A Versatile and Forceful Tool for Functional Membranes. Progress in Polymer Science, 39: 124-144
  35. Casimiro, M.H., Silva, A.G., Alvarez, R., Ferreira, L.M, Ramos, A.M., Vital, J. (2014). PVA Supported Catalytic Membranes Obtained by γ-Irradiation for Biodiesel Production. Radiation Physics and Chemistry, 94: 171-175
  36. Wang, B., Jackson, E.A., Hoff, J.W., Dutta, P.K. (2016). Fabrication of Zeolite/Polymer Composite Membranes in a Roller Assembly. Microporous and Mesoporous Materials, 223: 247-253
  37. Merkel, T.C., Lin, H., Wei, X., Baker, R. (2010). Power Plant Post-Combustion Carbon Dioxide Capture: An Opportunity for Membranes, Journal of Membrane Science, 359: 126-139
  38. Sawamura, K., Furuhata, T., Sekine, Y., Kikuchi, E., Subramanian, B., Matsukata, M. (2015). Zeolite Membrane for Dehydration of Isopropylalcohol-Water Mixture by Vapor Permeation. ACS Applied Materials and Interfaces, 7: 13728-13730
  39. Cakmak, M., Batra, S., Yalcin, B. (2015). Field Assisted Self-Assembly for Preferential through Thickness (“Z-Direction”) Alignment of Particles and Phases by Electric, Magnetic, and Thermal Fields Using a Novel Roll-To-Roll Processing Line. Polymer Engineering and Science, 55: 34-46
  40. Wang, Z., Chen, X., Li, K., Bi, S., Wu, C., Chen, L. (2015). Preparation and Catalytic Property of PVDF Composite Membrane with Polymeric Spheres Decorated by Pd Nanoparticles in Membrane Pores. Journal of Membrane Science, 496: 95-107
  41. Mashentseva, A., Borgekov, D., Kislitsin, S., Zdorovets, M., Migunova, A. (2015), Comparative Catalytic Activity of PET Track-Etched Membranes with Embedded Silver and Gold Nanotubes. Nuclear Instruments and Methods in Physics Research B, 365: 70-74
  42. Yang, M., Lee, K.G., Kim, J.W., Lee, S.J., Huh, Y.S., Choi, B.G. (2014). Highly Ordered Gold-Nanotube Films for Flow-Injection Amperometric Glucose Biosensors. RSC Advances, 4: 40286-40291
  43. Mollamahalle, Y.B., Ghorbani, M., Dolati, A. (2012). Electrodeposition of Long Gold Nanotubes in Polycarbonate Templates as Highly Sensitive 3D Nanoelectrode Ensembles. Electrochemical. Acta, 75: 157-163
  44. Mashentseva, A., Borgekov, D., Zdorovets, M., Russakova, A. (2014). Synthesis, Structure, and Catalytic Activity of Au/Poly (ethylene terephthalate) Composites. Acta Physica Polonica Series A, 125: 1263-1267
  45. Yu, Y., Kant, K., Shapter, J.G. (2012). Gold Nanotube Membranes Have Catalytic Properties. Microporous Mesoporous Materials, 153: 131-136
  46. Muench, F., Oezaslan, M., Rauber, M., Kaserer, S., Fuchs, A., Mankel, E., Brötz, J., Strasser, P., Roth, C., Ensinger, W. (2013). Electroless Synthesis of Nanostructured Nickel and Nickel Boron Tubes and Their Performance as Unsupported Ethanol Electrooxidation Catalysts. Journal Power of Sources, 222: 243-252
  47. Pozun, Z.D., Rodenbusch, S.E., Keller, E., Tran, K., Tang, W., Stevenson, K.J., Henkelman, G. (2013). A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. Journal of Physical Chemistry C, 117: 7598-7604
  48. Gu, Y., Favier, I., Pradel, C., Gin, D L., Lahitte, J.F., Noble, R.D, Gómez, M., Remigy, J.C. (2015). High Catalytic Efficiency of Palladium Nanoparticles Immobilized in a Polymer Membrane Containing Poly (Ionic Liquid) in Suzuki-Miyaura Cross-Coupling Reaction. Journal of Membrane Science, 492: 331-339
  49. Hamilton, H. (2012). Palladium-based Membranes for Hydrogen Separation. Platinum Metal Review, 56: 117-123
  50. Drisko, G.L., Zelcer, A., Luca, V., Caruso, R.A., Soler Illia, G.J. (2010). One Pot Synthesis of Hierarchically Structured Ceramic Monolith with Adjustable Porosity. Chemistry of Materials, 22: 4379-4385
  51. Khajavi, P., Babaluo, A.A., Tavakoli, A., Mirzaei, A. (2014). Stabilization of the Metastable Tetragonal Phase in Zirconia Nano Powders Synthesized via Polyacrylamide Gel Method. Industrial Engineering Chemical Research, 53: 164-172
  52. Khajavi, P., Babaluo, A.A. (2015). Preparation of Non-Permselective Sulfated Zirconia Catalytic Membrane for Use in a Catalytic Membrane Reactor. Chemical Engineering Research and Design, 104: 472-478
  53. Soukup, K., Topka, P., Hejtmánek, V., Petrá, D., Vale, V., Solcová, O. (2014). Noble Metal Catalysts Supported on Nanofibrous Polymeric Membranes for Environmental Application. Catalysis Today, 236: 3-11
  54. Fayyazi, F., Feijani, E.A., Mahdavi, H. (2015). Chemically Modified Polysulfone Membrane Containing Palladium Nanoparticles: Preparation, Characterization and Application as an Efficient Catalytic Membrane for Suzuki Reaction. Chemical Engineering Science, 134: 549-554
  55. Jaleh, B., Gavary, N., Fakhri, P., Muensit, N., Taheri, S.M. (2015). Characteristics of PVDF Membranes Irradiated by Electron Beam. Membranes, 5: 1-10
  56. Sorribas, S., Kudasheva, A., Almendro, E., Zornoza, B., DelaIglesia, O., Téllez, C., Coronas, J. (2015). Pervaporation and Membrane Reactor Performance of Polyimide Based Mixed Matrix Membranes Containing MOF HKUST-1. Chemical Engineering Science, 124: 37-44
  57. Pashkova, A., Dittmeyer, R., Kalterborn, N., Richter, H. (2010). Experimental Study of Porous Catalytic Membranes for Direct Synthesis of Hydrogen Peroxide. Chemical Enginee-ring Journal, 165: 924-933
  58. Shi, L., Goldbach, A., Zeng, G., Zu, H. (2010). H2O2 Synthesis over Pd Au Membranes. Catalysis Today, 156: 118-123
  59. Kertalli, E., Neirad'Angelo, M.F., Schouten, J.C., Nijhuis, T.A. (2015). Design and Optimization of a Catalytic Membrane Reactor for the Direct Synthesis of Propylene Oxide, Chemical Engineering Science, 138: 465-472
  60. Russo, V., Tesser, R., Santacesaria, E., DiSerio, M. (2013). Chemical and Technical Aspects of Propene Oxide Production via Hydrogen Peroxide (HPPO Process). Industrial Engineering Chemical Research, 52: 1168-1178
  61. Kingsbury, B.F.K., Wu, Z., Li, K. (2010). A Morphological Study of Ceramic Hollow Fiber Membranes: A Perspective on Multifunctional Catalytic Membrane Reactors. Catalysis Today, 156: 306-315
  62. Motamedhashemi, M.M.Y., Egolfopoulos, F., Tsotsis, T. (2011). Application of a Flow through Catalytic Membrane Reactor (FTCMR) for the Destruction of a Chemical Warfare Simulant. Journal of Membrane Science, 376: 119-131
  63. Seto, H., Yoneda, T., Morii, T., Hoshino, Y., Miura, Y., Murakami, T. (2015). Membrane Reactor Immobilized with Palladium‐Loaded Polymer Nano Gel for Continuous‐Flow Suzuki Coupling Reaction. AIChE Journal, 61: 582-589
  64. Faria V.W., Oliveira, D.G.M., Kurz, M.H.S., Gonçalves, F.F., Scheeren, C.W. Rosa, G.R. (2015). Palladium Nanoparticles Supported in a Polymeric Membrane: An Efficient Phosphine-Free Green Catalyst for Suzuki-Miyaura Reactions in Water. RSC Advances, 4: 13446-13450
  65. Jeong, B.H., Sotowa, K.I., Kusakabe, K. (2003). Catalytic Dehydrogenation of Cyclohexane in an FAU-type Zeolite Membrane Reactor. Journal of Membrane Science, 224: 151-158
  66. Li, G., Kanezashi, M., Yoshioka, T., Tsuru, T. (2013). Ammonia Decomposition in Catalytic Membrane Reactors: Simulation and Experimental Studies. AIChE Journal, 59:168-179
  67. Daramola, M.O, Aransiola, E.F., Ojumu, T.V. (2012). Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes. Materials, 5: 2101-2136
  68. Lucarelli, C., Vaccari, A. (2011). Examples of Heterogeneous Catalytic Processes for Fine Chemistry. Green Chemistry, 13: 1941-1949
  69. Liguori, F, Barbaro, P, Giordano, C, Sawa, H. (2013). Partial Hydrogenation Reactions over Pd-Containing Hybrid Inorganic/Polymeric Catalytic Membranes. Applied Catalysis A: General, 459: 81-88
  70. Wehbe, N., Guilhaume, N., Fiaty, K., Miachon, S., Dalmon, J.A. (2010). Hydrogenation of Nitrates in Water Using Mesoporous Membranes Operated in a Flow-through Catalytic Contactor. Catalysis Today, 156: 208-215
  71. El-Zanati, E., Ritchie, S.M.C. and Abdallah, H. (2016). Development of Integrated Catalytic Membrane-Based Unit for Biofuel Production. Pertanika Journal of. Science & Technology, 24: 451-461
  72. Zvjezdana, F., Gergely, N., Durda, V.R., Katalin, B.B., Zsofia, C., Laszlo, G. (2012) Pervaporation-aided Enzymatic Esterifications in Non-Conventional Media. Process Biochemistry, 47: 1715-1722
  73. Hua, D., Ong, Y.K., Wang, Y., Yang, T., Chung, T.S., (2014). ZIF-90/P84 Mixed Matrix Membranes for Pervaporation Dehydration of Isopropanol. Journal of Membrane Science, 453: 155-167
  74. Jia, S., Han, H., Zhuang, H., Xu, P., Hou, B. (2015). Advanced Treatment of Biologically Pretreated Coal Gasification Wastewater by a Novel Integration of Catalytic Ultrasound Oxidation and Membrane Bioreactor. Bioresource Technology, 189: 426-429
  75. Johansson, M., Skúlason, E., Nielsen, G., Murphy, S., Nielsen, R.M., Chorkendorff, I. (2010). Hydrogen Absorption on Palladium and Palladium Hydride at 1 Bar. Surface Science 604: 718-729
  76. Buscio, V., Brosillon, S., Mendret, J., Crespi, M., Gutiérrez-Bouzán, C. (2015). Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73. Materials 8: 3633-3647
  77. Li, T., Zhang, Z., Li, W, Liu, C., Wang, J., Anc, L. (2016). H4SiW12O40 / Polymethylmethacrylate / Polyvinyl Alcohol Sandwich Nanofibrous Membrane with Enhanced Photocatalytic Activity. Colloids and Surfaces A, 489: 289-296
  78. van Delft, Y.C, Overbeek, J.P., Saric, M., de Groot, A., Dijkstra, J.W., Jansen, D. (2009). Towards Application of Palladium Membrane Reactors in Large Scale Production of Hydrogen, Energy Research Centre of the Netherlands. 8th World Congress on Chemical Engineering, Montreal, Canada, 23-27

Last update: 2021-04-21 08:06:54

No citation recorded.

Last update: 2021-04-21 08:06:57

  1. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review

    Sidhikku Kandath Valappil R.. Journal of Industrial and Engineering Chemistry, 2021. doi: 10.1016/j.jiec.2021.03.030
  2. Recent developments on catalytic membrane for gas cleaning

    Chen J.. Chinese Journal of Chemical Engineering, 27 (6), 2019. doi: 10.1016/j.cjche.2019.02.001
  3. Recent progress and future prospects in development of advanced materials for nanofiltration

    García Doménech N.. Materials Today Communications, 23 , 2020. doi: 10.1016/j.mtcomm.2019.100888
  4. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production

    Goh B.H.H.. Energy Conversion and Management, 127 , 2020. doi: 10.1016/j.enconman.2020.113296
  5. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment

    Mansor E.S.. Chemical Engineering Journal, 2020. doi: 10.1016/j.cej.2020.127175
  6. Recent Advances in Substrate Materials and Thermal Analysis of Catalytic Converters

    Pai D.. Materials Today: Proceedings, 5 (11), 2018. doi: 10.1016/j.matpr.2018.10.217
  7. Nitrate hydrogenation by microtubular CNT-made catalytic membrane contactor

    Dagan-Jaldety C.. Chemical Engineering Journal, 127 , 2020. doi: 10.1016/j.cej.2020.126142
  8. Preparation of catalytic polyether sulfone coated ceramic membrane for reduction of hexavalent chromium

    Dizge N.. Journal of Water Process Engineering, 40 , 2021. doi: 10.1016/j.jwpe.2021.101946
  9. Catalytic Palladium-Based and Iron-Based Membrane Reactors: Novel Strategies of Synthesis

    Pinos-Vélez V.. ACS Omega, 4 (22), 2019. doi: 10.1021/acsomega.9b02706
  10. Progress in modeling of silica-based membranes and membrane reactors for hydrogen production and purification

    Ghasemzadeh K.. ChemEngineering, 3 (1), 2019. doi: 10.3390/chemengineering3010002
  11. Fuel and hydrogen treatment and production by membranes

    Iulianelli A.. Current Trends and Future Developments on (Bio-) Membranes: Membranes in Environmental Applications, 2019. doi: 10.1016/B978-0-12-816778-6.00005-9
  12. Chemical reactions under the nanofluidic confinement of reconstructed lamellar membranes

    Saha K.. Journal of Materials Chemistry A, 6 (45), 2018. doi: 10.1039/c8ta07170e
  13. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review

    Li N.. Journal of Hazardous Materials, 127 , 2021. doi: 10.1016/j.jhazmat.2021.125478