skip to main content

Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran, Islamic Republic of

Received: 30 Mar 2016; Revised: 29 Jul 2016; Accepted: 9 Sep 2016; Available online: 13 Feb 2017; Published: 30 Apr 2017.
Editor(s): Andri Kumoro
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

In this study, Ni-Al layered double hydroxide (LDH)-Pt nanoparticles (PtNPs) as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE) by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. 

Fulltext View|Download
Keywords: Ni-Al layered double hydroxide; Pt nanoparticles; inorganic nanocomposite; electro deposition; electro oxidation; methanol; fuel cell

Article Metrics:

  1. Carrette, L., Friedrich, K.A., Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Application. Chem. Phys. Chem., 4: 162-193
  2. Steele, B.C.H., Heinzel, A. (2001). Materials for Fuel-cell Technologies. Nature, 414: 345-352
  3. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C. (2011). A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Re-search. Appl. Energ., 88: 981-1007
  4. Sharaf, O.Z., Orhan, M.F. (2014). An Over-view of Fuel Cell Technology: Fundamentals and Applications. Renew. Sustain. Energ. Rev., 32: 810-853
  5. Pei, P., Chen, H. (2014). Main Factors Affect-ing the Lifetime of Proton Exchange Mem-brane Fuel Cells in Vehicle Applications: A Review. Appl. Energ., 125: 60-75
  6. Badwal, S.P.S., Giddey, S., Kulkarni, A., Goel, J., Basu, S. (2015). Direct Ethanol Fuel Cells for Transport and Stationary Applica-tions - A Comprehensive Review. Appl. En-erg., 145: 80-103
  7. Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., Léger, J.M. (2002). Recent Advances in the Development of Direct Alco-hol Fuel Cells (DAFC). J. Power Sources, 105: 283-296
  8. Lamy, C., Belgsir, E.M., Léger, J.M.(2001). Electrocatalytic Oxidation of Aliphatic Alco-hols: Application to the Direct Alcohol Fuel Cell (DAFC). J. Appl. Electrochem., 31:799-809
  9. Merle, G., Wessling, M., Nijmeijer, K. (2011). Anion Exchange Membranes for Alkaline Fuel Cells: A Review. J. Membrane. Sci., 377: 1-35
  10. Antolini, E., Gonzalez, E.R. (2010). Alkaline Direct Alcohol Fuel Cells. J. Power Sources, 195: 3431-3450
  11. Yu, E.H., Krewer, U., Scott, K. (2010). Princi-ples and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies, 3: 1499-1528
  12. Verma, A., Basu, S. (2005). Direct Use of Al-cohols and Sodium Borohydride as Fuel in an Alkaline Fuel Cell. J. Power Sources, 145: 282-285
  13. Matsuoka, K., Iriyama, Y., Abe, T., Matsu-oka, M., Ogumi, Z. (2005). Alkaline Direct Al-cohol Fuel Cells using an Anion Exchange Membrane. J. Power Sources, 150: 27-31
  14. Sheikh, A.M., Abd-Alftah, K.E.A., Malfatti, C.F. (2014). On Reviewing the Catalyst Mate-rials for Direct Alcohol Fuel Cells (DAFCs). Journal of Multidisciplinary Engineering Sci-ence and Technology (JMEST), 1: 1-10
  15. Chen, Y., Bellini, M., Bevilacqua, M., Forna-siero, P., Lavacchi, A., Miller, H.A., Wang, L., Vizza, F. (2015). Direct Alcohol Fuel Cells: Toward the Power Densities of Hydrogen-Fed Proton Exchange Membrane Fuel Cells. Chem. Sus. Chem., 8: 524-533
  16. Chen, Y., Zhuang, L., Juntao, L.U. (2007). Non-Pt Anode Catalysts for Alkaline Direct Alcohol Fuel Cells. Chin. J. Catal., 28: 870-874
  17. Kamaruddin, M.Z.F., Kamarudin, S.K., Daud, W.R.W., Masdar, M.S. (2013). An Overview of Fuel Management in Direct Methanol Fuel Cells. Renew Sust. Energ. Rev., 24: 557-565
  18. Deng, H., Chen, J., Jiao, K., Huang, X. (2014). An Analytical Model for Alkaline Membrane Direct Methanol Fuel Cell. Int. J. Heat Mass Transfer, 74: 376-390
  19. Velu, S., Suzuki, K., Osaki, T. (2000). A Com-parative Study of Reactions of Methanol over Catalysts Derived from NiAl- and CoAl-layered Double Hydroxides and their Sn-containing Analogues. Catal. Lett., 69: 43-50
  20. Centi, G., Perathoner, S. (2008). Catalysis by Layered Materials: A Review. Micropor. Mesopor. Mater., 107: 3-15
  21. Morioka, H., Tagaya, H., Karasu, M., Ka-dokawa, J., Chiba, K. (1995). Preparation of New Useful Materials by Surface Modification of Inorganic Layered Compound. J. Solid State Chem., 117: 337-342
  22. Suib, S.L. (1996). Synthesis, Characterization and Catalysis with Microporous Ferrierites, Octahedral Molecular Sieves, and Layered Materials. Studies in Surface Science and Catalysis, 102: 47-74
  23. Chen, X., Mi, F., Zhang, H., Zhang, H. (2012). Facile Synthesis of a Novel Magnetic Core-shell Hierarchical Composite Submicro-spheres Fe3O4@CuNiAl-LDH under Ambient Conditions. Mater. Lett., 69: 48-51
  24. Li, C., Wei, M., Evans, D.G., Duan, X. (2015). Recent Advances for Layered Double Hydrox-ides (LDHs) Materials as Catalysts Applied in Green Aqueous Media. Catal. Today, 247: 163-169
  25. Shan, D., Cosnier, S., Mousty, C. (2003). Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design. Anal. Chem., 75: 3872-3879
  26. Xu, Z.P., Braterman, P.S. (2010). Synthesis, Structure and Morphology of Organic Layered Double Hydroxide (LDH) Hybrids: Comparison between Aliphatic Anions and their Oxygenated Analogs. Appl. Clay. Sci., 48: 235-242
  27. Carrado, K.A., Kostapapas, A. (1988). Layered Double Hydroxides (LDHs). Solid State Ionics, 26: 77-86
  28. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H., Zhou, C. (2011). Catalytic Applications of Layered Double Hydroxides and Derivatives. Appl. Clay Sci., 53: 139-150
  29. Huang, L., Zhou, J., Hsu, A.T., Chen, R. (2013). Catalytic Partial Oxidation of n-Butanol for Hydrogen Production over LDH-Derived Ni-based Catalysts. Int. J. Hydrogen Energy, 38: 14550-14558
  30. Karim-Nezhad, G., Pashazadeh, S., Pa-shazadeh, A. (2012). Electrocatalytic Oxidation of Methanol and Ethanol by Carbon Ceramic Electrode Modified with Ni/Al LDH Nanoparticles. Chin. J. Catal., 33: 1809-1816
  31. Wang, J., Song, Y., Li, Z., Liu, Q., Zhou, J., Jing, X., Zhang, M., Jiang, Z. (2010). In Situ Ni/Al Layered Double Hydroxide and Its Electrochemical Capacitance Performance. Energy Fuel, 24: 6463-6467
  32. Li, M., Cheng, J.P., Fang, J.H., Yang, Y., Liu, F., Zhang, X.B. (2014). NiAl-layered Double Hydroxide/Reduced Graphene Oxide Compos-ite: Microwave-assisted Synthesis and Super-capacitive Properties. Electrochim. Acta, 134: 309-318
  33. Ju, J., Bai, J., Bo, X., Guo, L. (2012). Non-enzymatic Acetylcholine Sensor Based on Ni-Al Layered Double Hydroxides/ordered Mesoporous Carbon. Electrochim. Acta, 78: 569-575
  34. Yin, H., Cui, L., Ai, S., Fan, H., Zhu, L. (2010). Electrochemical Determination of Bisphenol A at Mg-Al-CO3 Layered Double Hydroxide Modified Glassy Carbon Electrode. Electrochim. Acta, 55: 603-610
  35. Cui, L., Meng, X., Xu, M., Shang, K., Ai, S., Liu, Y. (2011). Electro-oxidation Nitrite Based on Copper Calcined Layered Double Hydroxide and Gold Nanoparticles Modified Glassy Carbon Electrode. Electrochim. Acta, 56: 9769-9774
  36. Zou, X., Goswami, A., Asefa, T. (2013). Effi-cient Noble Metal-Free (Electro) Catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide. J. Am. Chem. Soc., 135: 17242-17245
  37. Nityashree, N., Menezes, P. (2013). Mg/Al Layered Double Hydroxide-Pt Nanoparticle Composite by Delamination-restacking Route. Appl. Nanosci., 3: 321-327
  38. Karim-Nezhad, G., Pashazadeh, S., Pa-shazadeh, A. (2012). Ni/Al LDH Nanoparticles Modified Carbon Paste Electrode: Application to Electro-Catalytic Oxidation of Methanol. Anal. Bioanal. Electrochem., 4: 399-416
  39. Zhang, L., Li, F. (2010). Synthesis of Carbon Nanotubes/metal Oxide Composites over Lay-ered Double Hydroxides and Application in Electrooxidation of Ethanol. Appl. Clay Sci., 50: 64-72
  40. Kubo, D., Tadanaga, K., Hayashi, A., Tatsu-misago, M. (2013). Improvement of Electro-chemical Performance in Alkaline Fuel Cell by Hydroxide Ion Conducting Ni-Al Layered Double Hydroxide. J. Power Sources, 222: 493-497
  41. Wang, Y., Zhang, D., Tang, M., Xu, S., Li, M. (2010). Electrocatalysis of Gold Nanoparti-cles/layered Double Hydroxides Nanocompo-sites toward Methanol Electro-oxidation in Alkaline Medium. Electrochim. Acta, 55: 4045-4049
  42. Pournaghi-Azar, M.H., Habibi, B. (2007). Nickel Hexacyanoferrate Film Immobilized on the Aluminum Electrode as an Inorganic Ma-trix for Dispersion of Platinum and some Platinum Alloys Particles for Electrocatalytic Oxidation of Methanol. J. Electroanal. Chem., 605: 136-144
  43. Therese, G.H.A., Kamath, P.V. (2000). Elec-trochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater. 12: 1195-1204
  44. Scavetta, E., Ballarin, B., Gazzano, M., Tonelli, D. (2009). Electrochemical Behaviour of Thin Films of Co/Al Layered Double Hy-droxide Prepared by Electrodeposition. Electrochim. Acta, 54: 1027-1033
  45. Wang, Y., Rui, Y., Li, F., Li, M. (2014). Electrodeposition of Nickel Hexacyanofer-rate/layered Double Hydroxide Hybrid Film on the Gold Electrode and its Application in the Electroanalysis of Ascorbic Acid. Electro-chim. Acta, 117: 398-404
  46. Mignani, A., Ballarin, B., Giorgetti, M., Scavetta, E., Tonelli, D., Boanini, E., Prevot, V., Mousty, C., Iadecola, A. (2013). Heterostruc-ture of Au Nanoparticles-NiAl Layered Dou-ble Hydroxide: Electrosynthesis, Characteri-zation, and Electrocatalytic Properties. J. Phys. Chem. C, 117: 16221-16230
  47. Scavetta, E., Stipa, S., Tonelli, D. (2007). Electrodeposition of a Nickel-based Hydrotal-cite on Pt Nanoparticles for Ethanol and Glu-cose Sensing. Electrochem. Commun., 9: 2838-2842
  48. Guo, X., Zhang, F., Evans, D.G., Duan, X. (2010). Layered Double Hydroxide Films: Synthesis, Properties and Applications. Chem. Commun., 46: 5197-5210
  49. Habibi, B., Delnavaz, N. (2010). Electrocata-lytic Oxidation of Formic Acid and Formalde-hyde on Platinum Nanoparticles Decorated Carbon-ceramic Substrate. Int. J. Hydrogen Energy, 35: 8831-8840
  50. Scavetta, E., Ballarin, B., Giorgetti, M., Car-pani, I., Cogo, F., Tonelli, D. (2004). Elec-trodes Modified by One-Step Electrosynthesis of Ni/Al-NO3 Double Layered Hydroxide. J. New Mater. Electrochem. Syst., 7: 43-50
  51. Indira, L., Kamath, P.V. (1994). Electrosyn-thesis of Layered Double Hydroxides of Nickel with Trivalent Cations. J. Mater. Chem., 4: 1487-1490
  52. Scavetta, E., Mignani, A., Prandstraller, D., Tonelli, D. (2007). Electrosynthesis of Thin Films of Ni, Al Hydrotalcite Like Compounds. Chem. Mater., 19: 4523-4529
  53. Wang, Y., Ji, H., Peng, W., Liu, L., Gao, F., Li, M. (2012). Gold Nanoparticle-coated Ni/Al Layered Double Hydroxides on Glassy Car-bon Electrode for Enhanced Methanol Electro-oxidation. Int. J. Hydrogen Energy, 37: 9324-9329
  54. Li, W., Xin, Q., Yan, Y. (2010). Nanostruc-tured Pt-Fe/C Cathode Catalysts for Direct Methanol Fuel Cell: The Effect of Catalyst Composition. Int. J. Hydrogen Energy, 35: 2530-2538
  55. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic Oxidation of Metha-nol at Ni-Al Layered Double Hydroxide Flm Modified Electrode in Alkaline Medium. Elec-trochim. Acta, 56: 5754-5758
  56. Lee, S., Kim, H.J., Choi, S.M., Seo, M.H., Kim, W.B. (2012). The Promotional Effect of Ni on Bimetallic PtNi/C Catalysts for Glycerol Electrooxidation. Appl. Catal. A-Gen., 429-430:39-47
  57. Li, Y., Gao, W., Ci, L., Wang, C., Ajayan, P.M. (2010). Catalytic Performance of Pt Nanopar-ticles on Reduced Graphene Oxide for Metha-nol Electro-oxidation. Carbon, 48:1124-1130
  58. Chen, J.H., Wang, M.Y., Liu, B., Fan, Z., Cui, K.Z., Kuang, Y.F. (2006). Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and its Improved Catalytic Performance for Methanol Oxidation. J. Phys. Chem. B, 110: 11775-11779
  59. Kua, J., III. Goddard, W.A. (1999). Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells. J. Am. Chem. Soc., 121:10928-10941
  60. Wang, H., Xiang, X., Li, F. (2010). Facile Syn-thesis and Novel Electrocatalytic Perform-ance of Nanostructured Ni-Al Layered Double Hydroxide/carbon Nanotube Composites. J. Mater. Chem., 20:3944-3952
  61. Taraszewska, J., Goslonek, G. (1994). Electro-catalytic Oxidation of Methanol on a Glassy Carbon Electrode Modified by Nickel Hydrox-ide Formed by Ex Situ Chemical Precipita-tion. J. Electroanal. Chem., 364:209-213
  62. Singh, R.N., Singh, A., Mishra, D., Anindita Chartier, P. (2008). Oxidation of Methanol on Perovskite-type La2-xSrxNiO4 (0 ≤ x ≤ 1) Film Electrodes Modified by Dispersed Nickel in 1 M KOH. J. Power Sources, 185: 776-783
  63. Habibi, E., Razmi, H. (2012). Glycerol Elec-trooxidation on Pd, Pt and Au Nanoparticles Supported on Carbon Ceramic Electrode in Alkaline Media. Int. J. Hydrogen Energy, 37: 16800-16809
  64. Raoof, J.-B., Hosseini, S.R., Rezaee, S. (2014). Preparation of Pt/poly (2-Methoxyaniline)-Sodium Dodecyl Sulfate Composite and its Application for Electrocatalytic Oxidation of Methanol and Formaldehyde. Electrochim. Acta, 141: 340-348
  65. Habibi, B., Pournaghi-Azar, M.H., Abdolmo-hammad-Zadeh, H., Razmi, H. (2009). Elec-trocatalytic Oxidation of Methanol on Mono and Bimetallic Composite Films: Pt and Pt-M (M=Ru, Ir and Sn) Nano-particles in Poly(o-aminophenol). Int. J. Hydrogen Energy, 34: 2880-2892
  66. Habibi, B., Dadashpour, E. (2013). Carbon-ceramic Supported Bimetallic Pt–Ni Nanopar-ticles as an Electrocatalyst for Electrooxida-tion of Methanol and Ethanol in Acidic Media. Int. J. Hydrogen Energy, 38: 5425-5434
  67. Khorasani-Motlagh, M., Noroozifar, M., Ek-rami-Kakhki, M.-S. (2011). Investigation of the Nanometals (Ni and Sn) in Platinum Bi-nary and Ternary Electrocatalysts for Metha-nol Electrooxidation. Int. J Hydrogen Energy, 36: 11554-11563
  68. He, W., Jiang, H., Zhou, Y., Yang, S., Xue, X., Zou, Z., Zhang, X., Akins, D.L., Yang, H. (2012). An Efficient Reduction Route for the Production of Pd-Pt Nanoparticles Anchored on Graphene Nanosheets for Use as Durable Oxygen Reduction Electrocatalysts. Carbon, 50: 265-274
  69. Habibi, B., Mohammadyari, S. (2015). Facile Synthesis of Pd Nanoparticles on Nano Car-bon Supports and their Application as an Electrocatalyst for Oxidation of Ethanol in Alkaline Media: The Effect of Support. Int. J. Hydrogen Energy, 40: 10833-10846
  70. Habibi, B., Ghaderi, S. (2015). Synthesis, Characterization and Electrocatalytic Acti-vity of Co@Pt Nanoparticles Supported on Carbon-Ceramic Substrate for Fuel Cell Ap-plications. Int. J. Hydrogen Energy, 40: 5115-6125
  71. Wu, H., Wexler, D., Liu, H. (2011). Durability Investigation of Graphene-supported Pt Nanocatalysts for PEM Fuel Cells. J. Solid State Electrochem., 15: 1057-1062
  72. Zhao, J., Shao, M., Yan, D., Zhang, S., Lu, Z., Li, Z., Cao, X., Wang, B., Wei, M., Evans, D.G., Duana, X. (2013). A Hierarchical Heterostructure Based on Pd Nanoparti-cles/layered Double Hydroxide Nanowalls for Enhanced Ethanol Electrooxidation. J. Mater. Chem. A, 1: 5840-5846
  73. Ding, K., Liu, L., Cao, Y., Yan, X., Wei, H., Guo, Z. (2014). Formic Acid Oxidation Reac-tion on a PdxNiy Bimetallic Nanoparticle Catalyst Prepared by a Thermal Decomposi-tion Process Using Ionic Liquids as the Sol-vent. Int. J. Hydrogen Energy, 39: 7326-7337
  74. He, P., Wang, X., Liu, Y., Liu, X., Yi, L. (2012). Comparison of Electrocatalytic Activ-ity of Carbon-supported Au@M (M=Fe, Co, Ni, Cu and Zn) Bimetallic Nanoparticles for Direct Borohydride Fuel Cells. Int. J. Hydro-gen Energy, 37: 11984-11993

Last update:

No citation recorded.

Last update: 2021-11-30 07:05:50

  1. Preparation of a Pt/NiFe layered double hydroxide/reduced graphene oxide composite as an electrocatalyst for methanol oxidation

    Wang Z.. Journal of Electroanalytical Chemistry, 127 , 2018. doi: 10.1016/j.jelechem.2018.04.046
  2. Nanohybrid layered double hydroxide materials as efficient catalysts for methanol electrooxidation

    Gamil S.. RSC Advances, 9 (24), 2019. doi: 10.1039/c9ra01270b
  3. 3D NiCr-layered double hydroxide/reduced graphene oxide sand rose-like structure as bifunctional electrocatalyst for methanol oxidation

    Gamil S.. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127 , 2020. doi: 10.1016/j.colsurfa.2020.125067