Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

*Biuck Habibi orcid  -  Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz,, Iran, Islamic Republic of
Serveh Ghaderi  -  Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz,, Iran, Islamic Republic of
Received: 30 Mar 2016; Revised: 29 Jul 2016; Accepted: 9 Sep 2016; Published: 30 Apr 2017; Available online: 13 Feb 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

In this study, Ni-Al layered double hydroxide (LDH)-Pt nanoparticles (PtNPs) as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE) by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved

Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016

How to Cite: Habibi, B., Ghaderi, S. (2017). Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1): 1-13 (doi:10.9767/bcrec.12.1.460.1-13)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

Keywords: Ni-Al layered double hydroxide; Pt nanoparticles; inorganic nanocomposite; electro deposition; electro oxidation; methanol; fuel cell

Article Metrics:

  1. Carrette, L., Friedrich, K.A., Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Application. Chem. Phys. Chem., 4: 162-193
  2. Steele, B.C.H., Heinzel, A. (2001). Materials for Fuel-cell Technologies. Nature, 414: 345-352.
  3. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C. (2011). A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Re-search. Appl. Energ., 88: 981-1007.
  4. Sharaf, O.Z., Orhan, M.F. (2014). An Over-view of Fuel Cell Technology: Fundamentals and Applications. Renew. Sustain. Energ. Rev., 32: 810-853
  5. Pei, P., Chen, H. (2014). Main Factors Affect-ing the Lifetime of Proton Exchange Mem-brane Fuel Cells in Vehicle Applications: A Review. Appl. Energ., 125: 60-75.
  6. Badwal, S.P.S., Giddey, S., Kulkarni, A., Goel, J., Basu, S. (2015). Direct Ethanol Fuel Cells for Transport and Stationary Applica-tions - A Comprehensive Review. Appl. En-erg., 145: 80-103.
  7. Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., Léger, J.M. (2002). Recent Advances in the Development of Direct Alco-hol Fuel Cells (DAFC). J. Power Sources, 105: 283-296.
  8. Lamy, C., Belgsir, E.M., Léger, J.M.(2001). Electrocatalytic Oxidation of Aliphatic Alco-hols: Application to the Direct Alcohol Fuel Cell (DAFC). J. Appl. Electrochem., 31:799-809.
  9. Merle, G., Wessling, M., Nijmeijer, K. (2011). Anion Exchange Membranes for Alkaline Fuel Cells: A Review. J. Membrane. Sci., 377: 1-35.
  10. Antolini, E., Gonzalez, E.R. (2010). Alkaline Direct Alcohol Fuel Cells. J. Power Sources, 195: 3431-3450.
  11. Yu, E.H., Krewer, U., Scott, K. (2010). Princi-ples and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies, 3: 1499-1528.
  12. Verma, A., Basu, S. (2005). Direct Use of Al-cohols and Sodium Borohydride as Fuel in an Alkaline Fuel Cell. J. Power Sources, 145: 282-285.
  13. Matsuoka, K., Iriyama, Y., Abe, T., Matsu-oka, M., Ogumi, Z. (2005). Alkaline Direct Al-cohol Fuel Cells using an Anion Exchange Membrane. J. Power Sources, 150: 27-31.
  14. Sheikh, A.M., Abd-Alftah, K.E.A., Malfatti, C.F. (2014). On Reviewing the Catalyst Mate-rials for Direct Alcohol Fuel Cells (DAFCs). Journal of Multidisciplinary Engineering Sci-ence and Technology (JMEST), 1: 1-10.
  15. Chen, Y., Bellini, M., Bevilacqua, M., Forna-siero, P., Lavacchi, A., Miller, H.A., Wang, L., Vizza, F. (2015). Direct Alcohol Fuel Cells: Toward the Power Densities of Hydrogen-Fed Proton Exchange Membrane Fuel Cells. Chem. Sus. Chem., 8: 524-533.
  16. Chen, Y., Zhuang, L., Juntao, L.U. (2007). Non-Pt Anode Catalysts for Alkaline Direct Alcohol Fuel Cells. Chin. J. Catal., 28: 870-874.
  17. Kamaruddin, M.Z.F., Kamarudin, S.K., Daud, W.R.W., Masdar, M.S. (2013). An Overview of Fuel Management in Direct Methanol Fuel Cells. Renew Sust. Energ. Rev., 24: 557-565.
  18. Deng, H., Chen, J., Jiao, K., Huang, X. (2014). An Analytical Model for Alkaline Membrane Direct Methanol Fuel Cell. Int. J. Heat Mass Transfer, 74: 376-390.
  19. Velu, S., Suzuki, K., Osaki, T. (2000). A Com-parative Study of Reactions of Methanol over Catalysts Derived from NiAl- and CoAl-layered Double Hydroxides and their Sn-containing Analogues. Catal. Lett., 69: 43-50.
  20. Centi, G., Perathoner, S. (2008). Catalysis by Layered Materials: A Review. Micropor. Mesopor. Mater., 107: 3-15.
  21. Morioka, H., Tagaya, H., Karasu, M., Ka-dokawa, J., Chiba, K. (1995). Preparation of New Useful Materials by Surface Modification of Inorganic Layered Compound. J. Solid State Chem., 117: 337-342.
  22. Suib, S.L. (1996). Synthesis, Characterization and Catalysis with Microporous Ferrierites, Octahedral Molecular Sieves, and Layered Materials. Studies in Surface Science and Catalysis, 102: 47-74.
  23. Chen, X., Mi, F., Zhang, H., Zhang, H. (2012). Facile Synthesis of a Novel Magnetic Core-shell Hierarchical Composite Submicro-spheres Fe3O4@CuNiAl-LDH under Ambient Conditions. Mater. Lett., 69: 48-51.
  24. Li, C., Wei, M., Evans, D.G., Duan, X. (2015). Recent Advances for Layered Double Hydrox-ides (LDHs) Materials as Catalysts Applied in Green Aqueous Media. Catal. Today, 247: 163-169.
  25. Shan, D., Cosnier, S., Mousty, C. (2003). Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design. Anal. Chem., 75: 3872-3879.
  26. Xu, Z.P., Braterman, P.S. (2010). Synthesis, Structure and Morphology of Organic Layered Double Hydroxide (LDH) Hybrids: Comparison between Aliphatic Anions and their Oxygenated Analogs. Appl. Clay. Sci., 48: 235-242.
  27. Carrado, K.A., Kostapapas, A. (1988). Layered Double Hydroxides (LDHs). Solid State Ionics, 26: 77-86.
  28. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H., Zhou, C. (2011). Catalytic Applications of Layered Double Hydroxides and Derivatives. Appl. Clay Sci., 53: 139-150.
  29. Huang, L., Zhou, J., Hsu, A.T., Chen, R. (2013). Catalytic Partial Oxidation of n-Butanol for Hydrogen Production over LDH-Derived Ni-based Catalysts. Int. J. Hydrogen Energy, 38: 14550-14558.
  30. Karim-Nezhad, G., Pashazadeh, S., Pa-shazadeh, A. (2012). Electrocatalytic Oxidation of Methanol and Ethanol by Carbon Ceramic Electrode Modified with Ni/Al LDH Nanoparticles. Chin. J. Catal., 33: 1809-1816.
  31. Wang, J., Song, Y., Li, Z., Liu, Q., Zhou, J., Jing, X., Zhang, M., Jiang, Z. (2010). In Situ Ni/Al Layered Double Hydroxide and Its Electrochemical Capacitance Performance. Energy Fuel, 24: 6463-6467.
  32. Li, M., Cheng, J.P., Fang, J.H., Yang, Y., Liu, F., Zhang, X.B. (2014). NiAl-layered Double Hydroxide/Reduced Graphene Oxide Compos-ite: Microwave-assisted Synthesis and Super-capacitive Properties. Electrochim. Acta, 134: 309-318.
  33. Ju, J., Bai, J., Bo, X., Guo, L. (2012). Non-enzymatic Acetylcholine Sensor Based on Ni-Al Layered Double Hydroxides/ordered Mesoporous Carbon. Electrochim. Acta, 78: 569-575.
  34. Yin, H., Cui, L., Ai, S., Fan, H., Zhu, L. (2010). Electrochemical Determination of Bisphenol A at Mg-Al-CO3 Layered Double Hydroxide Modified Glassy Carbon Electrode. Electrochim. Acta, 55: 603-610.
  35. Cui, L., Meng, X., Xu, M., Shang, K., Ai, S., Liu, Y. (2011). Electro-oxidation Nitrite Based on Copper Calcined Layered Double Hydroxide and Gold Nanoparticles Modified Glassy Carbon Electrode. Electrochim. Acta, 56: 9769-9774.
  36. Zou, X., Goswami, A., Asefa, T. (2013). Effi-cient Noble Metal-Free (Electro) Catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide. J. Am. Chem. Soc., 135: 17242-17245.
  37. Nityashree, N., Menezes, P. (2013). Mg/Al Layered Double Hydroxide-Pt Nanoparticle Composite by Delamination-restacking Route. Appl. Nanosci., 3: 321-327.
  38. Karim-Nezhad, G., Pashazadeh, S., Pa-shazadeh, A. (2012). Ni/Al LDH Nanoparticles Modified Carbon Paste Electrode: Application to Electro-Catalytic Oxidation of Methanol. Anal. Bioanal. Electrochem., 4: 399-416.
  39. Zhang, L., Li, F. (2010). Synthesis of Carbon Nanotubes/metal Oxide Composites over Lay-ered Double Hydroxides and Application in Electrooxidation of Ethanol. Appl. Clay Sci., 50: 64-72.
  40. Kubo, D., Tadanaga, K., Hayashi, A., Tatsu-misago, M. (2013). Improvement of Electro-chemical Performance in Alkaline Fuel Cell by Hydroxide Ion Conducting Ni-Al Layered Double Hydroxide. J. Power Sources, 222: 493-497.
  41. Wang, Y., Zhang, D., Tang, M., Xu, S., Li, M. (2010). Electrocatalysis of Gold Nanoparti-cles/layered Double Hydroxides Nanocompo-sites toward Methanol Electro-oxidation in Alkaline Medium. Electrochim. Acta, 55: 4045-4049.
  42. Pournaghi-Azar, M.H., Habibi, B. (2007). Nickel Hexacyanoferrate Film Immobilized on the Aluminum Electrode as an Inorganic Ma-trix for Dispersion of Platinum and some Platinum Alloys Particles for Electrocatalytic Oxidation of Methanol. J. Electroanal. Chem., 605: 136-144.
  43. Therese, G.H.A., Kamath, P.V. (2000). Elec-trochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater. 12: 1195-1204.
  44. Scavetta, E., Ballarin, B., Gazzano, M., Tonelli, D. (2009). Electrochemical Behaviour of Thin Films of Co/Al Layered Double Hy-droxide Prepared by Electrodeposition. Electrochim. Acta, 54: 1027-1033.
  45. Wang, Y., Rui, Y., Li, F., Li, M. (2014). Electrodeposition of Nickel Hexacyanofer-rate/layered Double Hydroxide Hybrid Film on the Gold Electrode and its Application in the Electroanalysis of Ascorbic Acid. Electro-chim. Acta, 117: 398-404.
  46. Mignani, A., Ballarin, B., Giorgetti, M., Scavetta, E., Tonelli, D., Boanini, E., Prevot, V., Mousty, C., Iadecola, A. (2013). Heterostruc-ture of Au Nanoparticles-NiAl Layered Dou-ble Hydroxide: Electrosynthesis, Characteri-zation, and Electrocatalytic Properties. J. Phys. Chem. C, 117: 16221-16230.
  47. Scavetta, E., Stipa, S., Tonelli, D. (2007). Electrodeposition of a Nickel-based Hydrotal-cite on Pt Nanoparticles for Ethanol and Glu-cose Sensing. Electrochem. Commun., 9: 2838-2842.
  48. Guo, X., Zhang, F., Evans, D.G., Duan, X. (2010). Layered Double Hydroxide Films: Synthesis, Properties and Applications. Chem. Commun., 46: 5197-5210.
  49. Habibi, B., Delnavaz, N. (2010). Electrocata-lytic Oxidation of Formic Acid and Formalde-hyde on Platinum Nanoparticles Decorated Carbon-ceramic Substrate. Int. J. Hydrogen Energy, 35: 8831-8840.
  50. Scavetta, E., Ballarin, B., Giorgetti, M., Car-pani, I., Cogo, F., Tonelli, D. (2004). Elec-trodes Modified by One-Step Electrosynthesis of Ni/Al-NO3 Double Layered Hydroxide. J. New Mater. Electrochem. Syst., 7: 43-50.
  51. Indira, L., Kamath, P.V. (1994). Electrosyn-thesis of Layered Double Hydroxides of Nickel with Trivalent Cations. J. Mater. Chem., 4: 1487-1490.
  52. Scavetta, E., Mignani, A., Prandstraller, D., Tonelli, D. (2007). Electrosynthesis of Thin Films of Ni, Al Hydrotalcite Like Compounds. Chem. Mater., 19: 4523-4529.
  53. Wang, Y., Ji, H., Peng, W., Liu, L., Gao, F., Li, M. (2012). Gold Nanoparticle-coated Ni/Al Layered Double Hydroxides on Glassy Car-bon Electrode for Enhanced Methanol Electro-oxidation. Int. J. Hydrogen Energy, 37: 9324-9329.
  54. Li, W., Xin, Q., Yan, Y. (2010). Nanostruc-tured Pt-Fe/C Cathode Catalysts for Direct Methanol Fuel Cell: The Effect of Catalyst Composition. Int. J. Hydrogen Energy, 35: 2530-2538.
  55. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic Oxidation of Metha-nol at Ni-Al Layered Double Hydroxide Flm Modified Electrode in Alkaline Medium. Elec-trochim. Acta, 56: 5754-5758.
  56. Lee, S., Kim, H.J., Choi, S.M., Seo, M.H., Kim, W.B. (2012). The Promotional Effect of Ni on Bimetallic PtNi/C Catalysts for Glycerol Electrooxidation. Appl. Catal. A-Gen., 429-430:39-47.
  57. Li, Y., Gao, W., Ci, L., Wang, C., Ajayan, P.M. (2010). Catalytic Performance of Pt Nanopar-ticles on Reduced Graphene Oxide for Metha-nol Electro-oxidation. Carbon, 48:1124-1130.
  58. Chen, J.H., Wang, M.Y., Liu, B., Fan, Z., Cui, K.Z., Kuang, Y.F. (2006). Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and its Improved Catalytic Performance for Methanol Oxidation. J. Phys. Chem. B, 110: 11775-11779.
  59. Kua, J., III. Goddard, W.A. (1999). Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells. J. Am. Chem. Soc., 121:10928-10941.
  60. Wang, H., Xiang, X., Li, F. (2010). Facile Syn-thesis and Novel Electrocatalytic Perform-ance of Nanostructured Ni-Al Layered Double Hydroxide/carbon Nanotube Composites. J. Mater. Chem., 20:3944-3952.
  61. Taraszewska, J., Goslonek, G. (1994). Electro-catalytic Oxidation of Methanol on a Glassy Carbon Electrode Modified by Nickel Hydrox-ide Formed by Ex Situ Chemical Precipita-tion. J. Electroanal. Chem., 364:209-213.
  62. Singh, R.N., Singh, A., Mishra, D., Anindita Chartier, P. (2008). Oxidation of Methanol on Perovskite-type La2-xSrxNiO4 (0 ≤ x ≤ 1) Film Electrodes Modified by Dispersed Nickel in 1 M KOH. J. Power Sources, 185: 776-783.
  63. Habibi, E., Razmi, H. (2012). Glycerol Elec-trooxidation on Pd, Pt and Au Nanoparticles Supported on Carbon Ceramic Electrode in Alkaline Media. Int. J. Hydrogen Energy, 37: 16800-16809.
  64. Raoof, J.-B., Hosseini, S.R., Rezaee, S. (2014). Preparation of Pt/poly (2-Methoxyaniline)-Sodium Dodecyl Sulfate Composite and its Application for Electrocatalytic Oxidation of Methanol and Formaldehyde. Electrochim. Acta, 141: 340-348.
  65. Habibi, B., Pournaghi-Azar, M.H., Abdolmo-hammad-Zadeh, H., Razmi, H. (2009). Elec-trocatalytic Oxidation of Methanol on Mono and Bimetallic Composite Films: Pt and Pt-M (M=Ru, Ir and Sn) Nano-particles in Poly(o-aminophenol). Int. J. Hydrogen Energy, 34: 2880-2892.
  66. Habibi, B., Dadashpour, E. (2013). Carbon-ceramic Supported Bimetallic Pt–Ni Nanopar-ticles as an Electrocatalyst for Electrooxida-tion of Methanol and Ethanol in Acidic Media. Int. J. Hydrogen Energy, 38: 5425-5434.
  67. Khorasani-Motlagh, M., Noroozifar, M., Ek-rami-Kakhki, M.-S. (2011). Investigation of the Nanometals (Ni and Sn) in Platinum Bi-nary and Ternary Electrocatalysts for Metha-nol Electrooxidation. Int. J Hydrogen Energy, 36: 11554-11563.
  68. He, W., Jiang, H., Zhou, Y., Yang, S., Xue, X., Zou, Z., Zhang, X., Akins, D.L., Yang, H. (2012). An Efficient Reduction Route for the Production of Pd-Pt Nanoparticles Anchored on Graphene Nanosheets for Use as Durable Oxygen Reduction Electrocatalysts. Carbon, 50: 265-274.
  69. Habibi, B., Mohammadyari, S. (2015). Facile Synthesis of Pd Nanoparticles on Nano Car-bon Supports and their Application as an Electrocatalyst for Oxidation of Ethanol in Alkaline Media: The Effect of Support. Int. J. Hydrogen Energy, 40: 10833-10846.
  70. Habibi, B., Ghaderi, S. (2015). Synthesis, Characterization and Electrocatalytic Acti-vity of Co@Pt Nanoparticles Supported on Carbon-Ceramic Substrate for Fuel Cell Ap-plications. Int. J. Hydrogen Energy, 40: 5115-6125.
  71. Wu, H., Wexler, D., Liu, H. (2011). Durability Investigation of Graphene-supported Pt Nanocatalysts for PEM Fuel Cells. J. Solid State Electrochem., 15: 1057-1062.
  72. Zhao, J., Shao, M., Yan, D., Zhang, S., Lu, Z., Li, Z., Cao, X., Wang, B., Wei, M., Evans, D.G., Duana, X. (2013). A Hierarchical Heterostructure Based on Pd Nanoparti-cles/layered Double Hydroxide Nanowalls for Enhanced Ethanol Electrooxidation. J. Mater. Chem. A, 1: 5840-5846.
  73. Ding, K., Liu, L., Cao, Y., Yan, X., Wei, H., Guo, Z. (2014). Formic Acid Oxidation Reac-tion on a PdxNiy Bimetallic Nanoparticle Catalyst Prepared by a Thermal Decomposi-tion Process Using Ionic Liquids as the Sol-vent. Int. J. Hydrogen Energy, 39: 7326-7337.
  74. He, P., Wang, X., Liu, Y., Liu, X., Yi, L. (2012). Comparison of Electrocatalytic Activ-ity of Carbon-supported Au@M (M=Fe, Co, Ni, Cu and Zn) Bimetallic Nanoparticles for Direct Borohydride Fuel Cells. Int. J. Hydro-gen Energy, 37: 11984-11993.

No citation recorded.