Isatin Aldazines Synthesis using A Proton Exchanged Algerian Montmorillonite Clay as Acid Eco-friendly Catalyst

Boumadiene Benlahreche -  Laboratoire de Chimie Fine, Faculté des Sciences Exactes et Appliquées, Université Oran1 , BP-1524-Menouar, 31000 - Oran, Algeria
Assya Taleb -  Laboratoire de Chimie Fine, Faculté des Sciences Exactes et Appliquées, Université Oran1 , BP-1524-Menouar, 31000 - Oran, Algeria
Mokhtar B. Lahrech -  Laboratoire de Chimie Organique et des Substances Naturelles, Faculté des Sciences Exactes et Informatiques, Université Ziane Achour , Djelf, Algeria
*Salih Hacini -  Laboratoire de Chimie Fine, Faculté des Sciences Exactes et Appliquées, Université Oran1 , BP-1524-Menouar, 31000 - Oran, Algeria
Received: 28 Mar 2019; Revised: 14 May 2019; Accepted: 21 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

An efficient and easy procedure is developed for the synthesis of isatin aldazines or bis-Schiff bases of isatin, catalyzed by a proton exchanged Algerian montmorillonite clay (MMT-H+) as green catalyst. The products were obtained in two catalyzed steps under conventional heating in ethanol. Isatin-3-hydrazone obtained from the reaction of isatin with hydrazine monohydrate reacts in the second step with the appropriate aromatic aldehydes to give the desired products in good yields. The main advantages of using this protonated solid non-toxic catalyst in this synthesis are its availability and low cost, the simplicity of its use, the recycling possibilities without significant loss of its catalytic activity and its environmentally benign process. Copyright © 2019 BCREC Group. All rights reserved

Keywords
Montmorillonite-H+; Isatine; Isatin-3-hydrazone; bis-Schiff bases; Isatin Aldazines; Green catalyst.

Article Metrics:

  1. Liu, Y.C., Zhang, R., Wu, Q.Y., Chen, Q., Yang, G.F. (2014). Recent developments in the synthesis and applications of isatins. Org. Prep. Proceed. Int., 46: 317-362, doi:10.10 80/00304948.2014.922378.
  2. Da Silva, J.F., Garden S.J., Pinto, A.C. (2001). The chemistry of isatins: a review from 1975 to 1999. J. Braz. Chem. Soc., 12: 273-324.
  3. Safari, J., Gandomi-Ravandi, S.R. (2014). Structure, synthesis and application of azines: a historical perspective. RSC Adv., 4 : 46224-46249, doi: 10.1039/c4ra04870a.
  4. Swathy, S.S., Joseyphus, R.S., Nisha, V.P., Subhadrambika, N., Mohanan, K. (2016). Synthesis, spectroscopic investigation and antimicrobial activities of some transition metal complexes of a [(2-hydroxyaceto phenone)-3-isatin]bishydrazone. Arab. J. Chem., 9: S1847-S1857, doi: 10.1016/j.arabjc.20 12.05.004.
  5. Vasanthi, R., Rajendraprasad, Y., Srinivas, B. (2013). Synthesis, Charac- terization, Antibacterial and Anti- fungal Activities of Isatin Derivatives. Int. J. Chem. Tech. Res., 5(6): 3015-3022.
  6. Dweedar, H.E., Mahrous, H., Ibrahim, H.S., Abdel-Aziz, H.A. (2014). Analogue-based design, synthesis and biological evaluation of 3-substituted-(methylenehydrazono)indolin-2-ones as anticancer agents. Eur. J. Med. Chem., 78: 275-280, doi: 10.1016/j.ej mech.2014. 03.058.
  7. Jarrahpour , A., Sheikh, J., El Mounsi, I., Juneja, H., Ben Hadda, T. (2012). Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives. Med. Chem. Res., 22(3): 1203-1211, doi: 10.1007/s00044-012-0127-6.
  8. Eldehna, W.M., Al-Wabli, R.I., Almutairi, M.S., Keeton, A.B., Piazza, G.A., Abdel-Aziz, H.A., Attia, M.I. (2018). Synthesis and biological evaluation of certain hydra zonoindolin-2-one derivatives as new potent anti-proliferative agents. J. Enzyme. Inhib. Med. Chem., 33(1): 867-878, doi:10.1080/ 14756366.2018. 1462802.
  9. Kerzare, D., Chikhale, R., Ban- sode, R., Amnerkar, N., Karodia, N., Paradkar, A., Khedekar. P. (2016). Design, Synthesis, Pharmacological Evaluation and Molecular Docking Studies of Substituted Oxadiazolyl-2-Oxoindolinylidene Propane Hydrazide Derivatives., J. Braz. Chem. Soc., 27(11): 1998-2010, doi: 10.5935/010 3-5053.20160090.
  10. Khan, K.M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S., Choudhary, M.I. (2009). Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg. Med. Chem.,17: 7795-7801, doi:10.1016/j.b mc.2009.09.028.
  11. Suresh, A.J., Lakshmi, S.G., Kumar, V.S., Madhuraj, M., Durga, V., Surya, P.R. (2018). Design, synthesis, characterization, and biological evaluation of some novel antitubercular agents targeting thymidylate synthetase, enoyl-ACP reductase, and l, d-trans peptidase-2. J. Pharm. Res., 12(3): 332-339.
  12. Khan, K.M., Khan, M., Ambreen, N., Rahim, F., Muhammad, B., Ali, S., Haider, S.M., Perveenb, S., Choudhary, M.I. (2011). Bis-Schiff Bases of Isatins: A New Class of Antioxidant. J. Pharm. Res., 4(10): 34 02-3404.
  13. Khan, Z., Maqsood, Z.T., Tanoli, M.A.K., Khan, K.M., Iqbal, L., Lateef, M. (2015). Synthesis, Characterization, In-Vitro Antimicr- obial and Antioxidant Activities of Co+2, Ni+2, Cu+2 and Zn+2 Complexes of 3-(2-(2-hydroxy-3-methoxybenzylid ene)hydrazono)indolin-2-one. J. Basic. Appl. Sci. 11: 125-130, doi: 10.6000/1927-5129.2015.11.17
  14. Prakash, C.R., Raja, S., Saravanan, G. (2010). Synthesis, Characterization and anticonvulsant activity of novel Schiff base of isatin derivatives. Int. J. Pharm. Pharm. Sci, 2(4): 177-181
  15. Oguntoye, O.S., Hamid, A.A., Iloka, G.S., Bodede, S.O., Owalude, S.O., Tella, A.C. (2016). Synthesis and spectroscopic analysis of Schiff Bases of Imesatin and Isatin derivatives. J. Appl. Sci. Environ. Manage., 20 (3): 653-657, doi: 10.4314/jasem.v20i3.20.
  16. Sunday, I.G., Christiana, K.A., Sunday, B., Olubunmi, O.S. (2016). Synthesis and Spectroscopic analysis of Schiff bases of Isatin and Imesatin derivatives. I.J.S.E.A.S., 2(4):381-388.
  17. Ibrahim, H.S., Abou-seri, S.M., Ismail, N.S. M., Elaasser, M.M., Aly, M.H., Abdel-Aziz, H.A. (2016). Bis-isatin hydrazones with novel linkers: synthesis and biological evaluation as cytotoxic agents. Eur. J. Med. Chem., 108: 415-422, doi:10.1016/j.ejmech. 2015.11.047.
  18. Saxena, A., Das, D.R., Saxena, S. (2015). Synthesis, Anti TB, Anti oxidant, Antimicrobial Activity of some Isatin-3-hydrazone derivatives. Chem. Sci. Rev. Lett., 4(14), 729-734.
  19. Prince, P.S., Pandeya, S.N., Roy, R.K., Verma, K., Gupta,S. (2009). Synthesis and Anticonvulsant activity of some Novel Isatin Schiff’s bases. Int. J. Chem. Tech. Res., 1(3): 758-763.
  20. Ansari, K.R., Quraishi, M.A. (2014). Bis-Schiff bases of isatin as new and environmentally benign corrosion inhibitor for mild steel. J. Ind. Eng. Chem., 20(5): 2819-2829, doi:10.1016/j.jiec.2013.11.014.
  21. Ibrahim, H.S., Abdelhadi, S.R., Abdel-Aziz, H.A. (2015). Hydrolysis and Hydrazinolysis of Isatin-Based Ald- and Ketazines. J. Chem., 1-6, doi: 10.1155/2015/826489.
  22. Shingade, S.G., Sanjaykumar, Bari, B., Waghmare, U.B. (2012). Synthesis and antimicrobial activity of 5-chloroindoline-2,3-dione derivatives. Med. Chem. Res., 21: 1302-1312, doi: 10.1007/s00044-011-9644-y.
  23. Siddappa, K., Mayana, N.S. (2014). Synthesis, Spectroscopic Characterization, and Biological Evaluation Studies of 5-Bromo-3-(((hydroxy-2-methylquinolin-7-yl)methylene)hydrazono)indolin-2-one and Its Metal (II) Complexes. Bioinorg. Chem. Appl., 11, doi: 10.1155/ 2014/483282.
  24. Safari, J., Gandomi-Ravandi, S. (2011). Highly efficient practical procedure for the synthesis of azine derivatives under solvent-free conditions. Synth. Commun., 41: 645-651, doi: 10.1080 /00 3 97911003629523.
  25. Eshghia, H., Hosseini, M. (2008). Selective and Convenient Protection of Aldehydes as Azines under Solvent-Free Conditions. J. Chin. Chem. Soc., 55: 636-638.
  26. Krishnakumar, B., Swaminathan, M. (2011). An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst. Catal. Commun., 16: 50-55, doi:10.1016/ j.cat com.2011.08.029.
  27. Lasri, J., Aly, M.M., Eltayeb, N.E., Babgi, B.A. (2018). Synthesis of symmetrical and asymmetrical azines from hydrazones and / or ferrocene carboxaldehyde as potential antimic- robial-antitumor agents. J. Mol. Struct., 1164: 1-8, doi: 10.1016/j.molstruc.2018.03. 030.
  28. Sadjadi, S., Rasouli, S. (2011). An efficient synthesis of imidazo[1,2-a]azine using nanocrystalline alumina powder. Int. J. Nano. Dim., 1(3): 177-186.
  29. Nanjundaswamy, H.M., Pasha, M.A. (2007). Rapid, Chemoselective and Facile Synthesis of Azines by Hydrazine/I2. Synth. Commun., 37: 3417-3420, doi: 10.1080/00397 9107 01483837.
  30. Anastas, P.T., Warner, J.C. (1998). Green Chemistry: Theory and Practice. Oxford University Press: New York, p. 30.
  31. Nagendrappa, G. (2011). Organic Synthesis Using Clay and Clay-Supported Catalysts. Applied Clay Science, 53(2): 106-138.
  32. Tanoli, M.A.K., Khan, Z., Maqsood, Z.T., Iqbal, L., Lateef, M., Hussain, Z., Kamal, T. (2014). Copper (II) Complexes of Bishydrazone Derivatives: Synthesis, Characteriza- tion and Urease Inhibition Studies, Middle. East. J. Sci. Res., 22 (5): 698-703, doi: 10.5829/idosi.mejsr.2014.22.05.21942
  33. Afsah, E.M., Elmorsy, S.S., Abdelmageed, S.M., Zaki, Z.E. (2015). Synthesis of some new mixed azines, Schiff and Mannich bases of pharmaceutical interest related to isatin. Z. Naturforsch., 70(6)b: 393-402.
  34. Gholamzadeh, P., Ziarani, G.M., Badiel, A. (2016). Application of SBA-Pr-SO3H in the green synthesis of isatinhydrazone derivatives: Characterization, UV-Vis investigation and computational studies. J. Chil. Chem. Soc., 61(2): 2935-2939, doi: 10.40 67/ S0717-9707 2016000200017.
  35. Belbachir, M., Bensaoula, A. (2006). Composition and method for catalysis using bentonites. U. S. Pat., US 7,094,823 B2.
  36. Alali, K., Lebsir, F., Amri, S., Rahmouni, A., Srasra, E., Besbes, N. (2019). Algerian Acid Activated Clays as Efficient Catalysts for a Green Synthesis of Solketal by Chemo- selective Acetalization of Glycerol with Acetone. Bull. Chem. React. Eng. Catal., 14 (1): 130-141, doi:10.9767/ bcrec.14.1.2445.130-141.