Mesoporous ZnO/AlSBA-15 (7) Nanocomposite as An Efficient Catalyst for Synthesis of 3,4-dihydropyrimidin-2(1H)-one via Biginelli Reaction and Their Biological Activity Study

*Birendra Nath Mahato  -  Department of Chemistry, Sathyabama Institute of Science & Techno, India
T. Krithiga  -  Department of Chemistry, Sathyabama Institute of Science & Techno, India
Received: 11 Mar 2019; Revised: 8 Aug 2019; Accepted: 8 Aug 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

In this study, the mesoporous ZnO/AlSBA-15 (Si/Al=7) nanocomposite catalyst was prepared by using a combination of direct and impregnation procedure. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope coupled with energy-dispersive x-ray spectroscopy (SEM-EDS), N2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy (FT-IR), and Temperature programmed reduction (TPR-H2). The XRD and N2 sorption results show the hexagonal mesoporous nature of catalyst with type IV adsorption isotherm. The surface area was calculated by the BET method and found to be 373 m2/g. From the TPR-H2 study, the reducibility temperature of ZnO found to be 966 K. Further, the Biginelli reaction is a promising multi-component reaction in organic synthetic chemistry as it approaches the green chemistry protocols and adducts are extensively used as drugs, intermediate and in medicine. Hence, the catalytic activity was tested in one pot Biginelii reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-one's derivative. The product yield was observed to be 96% at temperature 333 K, at the short response time of 4 h. The two adducts were examined by 1HNMR, 13CNMR, and FT-IR spectroscopy. Besides, the biological activity of adduct (A) C15H18N2O5 was explored by gram-positive bacteria (Staphylococcus aureus) and gram-negative microorganisms (E. coli). The adduct (A) C15H18N2O5 shows a clear inhibition zone of 24 mm against E. Coli whereas Azithromycin shows an inhibition zone of 28 mm. Copyright © 2019 BCREC Group. All rights reserved


Keywords: ZnO/AlSBA-15; Biginelli Reaction; Dihydropyrimidinone (DHPM); Antibacterial activity.

Article Metrics:

  1. Cassiers, K., Linssen, T., Mathieu, M., Benjelloun, M., Schrijnemakers, K., Van Der, V.P., Cool, P., Vansant, E.F. (2002). A detailed study of thermal, hydrothermal, and mechanical stabilitiesof a wide range of surfactant assembled mesoporous silicas, Chem. Mater., 14: 2317–2324.
  2. Smith, K., Horwood, E. (1992). Solid Support and catalysts in organic Synthesis, PTR Prentice Hall, New York.
  3. Vinu, A., Murugesan, V., Böhlmann, W., Hartmann, M. (2004). An optimized procedure for synthesis of AlSBA-15 with large pore diameter and high aluminum content, J. Phys. Chem. B, 108(31): 11496–11505.
  4. Geden, A., Lassoued, A., Bonardet, J.L., Fraissard, J. (2001). Surface Acidity Diagnosis and Catalytic Activity of AlSBA-15 Materials Obtained by Direct Synthesis, Microporous and Mesoporous materials 44-45: 801-806.
  5. Wight, A.P., Davis, M.E. (2002). Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 102: 3589-3614.
  6. He, S., Han, C., Hang, H., Zhu, W., He, S., He, D., Luo, Y., (2015). Uptake of Arsenic (V) using Alumina functionalized Highly Ordered Mesoporous SBA-15 (Alx-SBA-15) as an effective Adsorbent. Journal of Chemical and Engineering Data, 60(5): 1300-1310.
  7. Mondal, J., Sen, T., Bhaumik, A. (2012). Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli Reaction. Dalton Transaction, 41: 6173– 6181.
  8. Biginelli, P., Gazz, P. (1983). Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chim. Ital. 23: 360-416.
  9. Meyer, T.U., Kapoor, T.M., Haggarty, S.J., Mitchison, T.J. (1999). Small Molecule Inhibitor of Miotic Spindle Bipolarity Identified in a Phenotype-Based Screen. Science, 286(5441): 971-974.
  10. Haggarty, S.J., Mayer, T.U., Miyamoto, D.T., Fathi, R., King, R.W., Mitchison, T.J., Schreiber, S.L. (2000). Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chemistry & Biology, 7: 275–286.
  11. Kappe, O.C., (2000). Biologically active dihydropyrimidones of the Biginelli-type-a literature review, Eur. J. Med. Chem. 35: 1043–1052.
  12. Kappe, O. C., Shishkin, O.V., Uraya, G., Verdino, P. (2000). X-Ray Structure, Conformational Analysis, Enantioseparation, and Determination of Absolute Configuration of the Mitotic Kinesin Eg5 Inhibitor Monastrol. Tetrahedron, 56: 1859–1862.
  13. Shobha, D., Chari, M.A., Mano, A., Selvan, S.T., Mukkanti, K., Vinu, A. (2009). Synthesis of 3,4-dihydropyrimidin-2-ones (DHPMs) using mesoporous aluminosilicate (AlKIT-5) catalyst with cage type pore structure, Tetrahedron, 65: 10608–10611.
  14. Murata, H., Ishitani, H., Iwamoto, M. (2010). Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org. Biomol. Chem., 8: 1202–1211.
  15. Hosseini, M.M., Kolvari, E., Koukabi, N., Ziyaei, M., Zolfigol, M.A. (2016). Zirconia Sulfuric Acid: An Efficient Heterogeneous Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidinones Under Solvent-Free Conditions. Catal. lett, 146(6): 1040-1049.
  16. Dubey, A., Mishra, B.G., Sachdev, D., Sowmiya, M. (2008). Heterogeneous liquid phase synthesis of 3,4-Dihydropyrimidine-2(1H)-ones using aluminated mesoporous silica. React. Kinet. Catal. Lett., 93(1): 149−155.
  17. Satyanarayana, K.V.V., Atchuta Ramaiah, P., Murty, Y.L.N., Ravi Chandra, M., Pammi, S.V.N. (2012). Recyclable ZnO nano particles: Economical and green catalyst for the synthesis of a coupling of propargylamines under solvent free conditions. Catalysis Communications, 25: 50–53.
  18. Bhuyan, D., Saikia, M., Saikia, L. (2018). ZnO nanoparticles embedded in SBA-15 as an efficient heterogeneous catalyst for the synthesis of dihydropyrimidinones via Biginelli condensation reaction. Microporous and Mesoporous Materials, 256: 39-48.
  19. Laxminarayan, R., Matoso, P., Pant, S., Brower, C., Rottingen, J-A., Klugman, K., Davies, S. (2016). Access to effective antimicrobials: a worldwide challenge. Lancet, 387(10014): 168-175.
  20. Lu, Q., Wang, Z., Li, J., Wang, P., Ye, X. (2009). Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy. Nanoscale Res. Lett., 4: 646–654.
  21. Jiang, Q., Wu, Z.Y., Wang, Y.M., Cao, Y., Zhou, C.F., Zhu, J.H. (2006). Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem., 16: 1536–1542.
  22. Betiha, M.A., Hassan, M.A.H., Al-Sabagh, M. A., Khder, A.El.R.S., Ahmed, E.A. ( 2012). Direct synthesis and the morphological control of highly ordered mesoporous AlSBA-15 using urea-tetrachloroaluminate as a novel aluminum source. J. Mater. Chem., 22: 17551-17559.
  23. Saikia, M., Bhuyan, D., Saikia, L. (2015). Keggin type phosphotungstic acid encapsulated Chromium (III) Terephthalate Metal Organic Framework as active catalyst for Biginelli condensation. Applied Catalysis A: General, 505 : 501-506
  24. Holder, I.A., Boyce, S.T. (1994). Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 20: 426-429.
  25. Kundu, S.K., Mondal, J., Bhaumik, A. (2013). Tungstic acid functionalized mesoporous SBA-15: A novel heterogeneous catalyst for facile one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. Dalton Trans., 42: 10515–10524.
  26. Girija, D., Naik, B.H.S., Kumar, V.B., Sudhamani, C.N., Harish, K.N. (2014). Fe3O4 nanoparticles supported Ni (II) Complexes: a magnetically recoverable catalyst for Biginelli reaction. Arab. J. Chem., 12(3): 420-428.
  27. Kolvari, E., Koukabi, N., Armandpour, O. (2014). A simple and efficient
  28. synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 70: 1383-1386.
  29. Ghasemi, Z., Orafa, F.F., Pirouzmand, M., Zarrini, G., Kojanag, B.N., Salehi, R. (2015). Zn2+/ MCM-41 catalyzed Biginelli reaction of heteroaryl aldehydes and evaluation of the antimicrobial activity and cytotoxicity of the pyrimidone products. Tetrahedron Letters, 56 (46): 6393-6396.
  30. Khatri, C.K., Rekunge, D.S., Chaturbhuj, G.U. (2016). Sulfated polyborate: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via Biginelli reaction. New J. Chem., 40: 10412-10417.
  31. Pramanik, M., Bhaumik, A. (2014). Phosphonic Acid Functionalized Ordered Mesoporous Material: A New and Ecofriendly Catalyst for One-Pot Multicomponent Biginelli Reaction under Solvent-Free Conditions. Appl. Mater. Interfaces, 6: 933−941.
  32. Moitra, D., Ghosh, B.K., Chandel, M., Ghosh, N.N. (2016). Synthesis of BiFeO3 nanowire- Reduced Graphene Oxide based Magnetically Separable nanocatalyst and it’s Versatile Catalytic Activity towards Multiple Organic Reactions. RSC Adv., 6: 97941-97952.
  33. Savanur, H.M., Kalkhambkar, R.G., Aridoss, G., Laali, K.K., (2016). [bmim(SO3H)][OTf]/ [bmim] [X] and Zn(NTf2)2/[bmim][X] (X = PF6 and BF4) Efficient Catalytic Systems for the Synthesis of Tetrahydropyrimidin-ones (-thiones) via the Biginelli Reaction. Tetrahedron Letters, 57: 3029-3035.
  34. Barbero, M., Cadamuro, S., Dughera, S. (2017). A Brønsted acid catalysed enantioselective Biginelli reaction. Green Chem., 19: 1529–1535.
  35. Ali, B., Esmail, D., Rostamnia, S. (2018). Catalytic behaviour of perchloric acid on silica mesoporous SBA-15 as a green heterogeneous Bronsted acid in heterocyclic multicomponent reactions. International Nano Letters, 8: 41–47.
  36. Pasupathi, M., Santhi, N., Pachamuthu, M.P., Mangai, G.A., Ragupathi, C. (2018). Aluminium and titanium modified mesoporous TUD-1: A bimetal acidcatalyst for Biginelli reaction. J. Mol. Struct., 1160: 161-166.
  37. Verma, A., De, D., Tomar, K., Bharadwaj, P.K. (2017). An Amine Functionalized Metal-Organic Framework as an Effective Catalyst for Conversion of CO2 and Biginelli Reactions. Inorg. Chem., 56(16): 9765-9771.
  38. Yao, N., Lu, M., Liu, X.B., Tan, J., Hu, Y.L. (2018). Copper-doped mesoporous silica supported dual acidic ionic liquid as an efficient and cooperative reusability catalyst for Biginelli reaction. J. Mol. Liq., 262: 328-335.
  39. Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., Frusteri, F. (2007). Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 249: 185-194.
  40. Yanhua, W., Jingchang, Z., Hengyong, X. (2006). Interaction between Pd and ZnO during Reduction of Pd/ZnO Catalyst for Steam Reforming of Methanol to Hydrogen. Chinese Journal of Catalysis, 27(3): 217–222.
  41. Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Cousens, S., Mathers, C., Black R.E. (2015). Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet, 385 (9966): 430-440.

No citation recorded.