Degradation of Phenol in Pharmaceutical Wastewater using TiO2/Pumice and O3/Active Carbon

R. Ratnawati  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
E. Enjarlis  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
Yuli Amalia Husnil  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
Marcelinus Christwardana orcid scopus  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
*S. Slamet  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
Received: 4 Mar 2019; Revised: 1 Nov 2019; Accepted: 22 Nov 2019; Published: 1 Apr 2020; Available online: 28 Feb 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Phenol is a toxic organic compound that detectable in the pharmaceutical wastewater, and therefore it should be eliminated. This study aims to degrade phenol in the pharmaceutical wastewater treatment using Advanced Oxidation Processes (AOPs) include the photocatalytic process applying Titanium Oxide (TiO2) that immobilized on pumice stone (PS), as well as ozone process with O3 and O3/granulated activated carbon (GAC). Degradation system used two configuration reactors that worked alternately at pH 3 and 9. Photocatalysis was conducted for 4 hours in the photoreactor that equipped with mercury lamp as a photon source, while ozonation was performed for 1 hour in the cylinder glass reactor contained an ozone generator. Phenol degradations were done by photocatalysis, ozonation, photocatalysis followed by ozonation and vice versa. The FESEM-EDS and XRD results depicted that TiO2 has impregnated on pumice stone and FESEM characterization also indicated that the photocatalyst spread across the surface of the pumice stone. BET analysis results in an increased surface area of the PS-TiO2 by 3.7 times, whereas bandgap energy down to 3 eV. It can be concluded that ozone process (with O3/GAC) that followed by photocatalysis at pH 9 could treat the liquid waste with phenol concentration 11.2 down to 1.2 ppm that nearly according to the discharge standards quality (1 ppm).  Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: TiO2; Pumice stone; Ozonation; O3/GAC; Pharmaceutical waste

Article Metrics:

  1. Shalini, K., Anwer, Z., Sharma, P.K. (2010). A Review on Pharma Pollution. Int. J. of Pharm Tech. Res., 2, 2265-2270.
  2. Saleem, M. (2007). Pharmaceutical wastewater treatment: A Physicochemical study. J. Res. Sci., 18, 125-134.
  3. Tangn, C.J., Zheng, P., Chen, T.T., Zhang, J.Q., Mahmood, Q., Ding, S., Chen, X.G., Chen, J.W., Wu, D.T. (2011). Enhanced nitrogen removal from pharmaceutical wastewater using SBA ANAMMOX process. Water. Res., 45, 201-210.
  4. Rao, K.V.S., Rachel, A., Subrahmanyam, M., Boule, P. (2003). Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl. Catal. B: Environ., 46, 77-85.
  5. Souzanchi, S., Vahabzadeh, F., Fazel, S., Hosseini, S.N. (2013). Performance of an Annular Sieve –Plate Column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation. Chem. Eng. J., 223, 268-276.
  6. Slamet, S., Wermawati, R., Ratnawati, E., Naimah, S., Rumondang, I., Ibadurrohman, M. (2010). Degradasi fotokatalisis limbah fenol dengan komposit TiO2 precipitated calcium carbonate. Indonesian. J. Mater. Sci., 12, 1-6.
  7. Kitis, M., Kaplan, S.S., Karakaya, E., Yigit, N.O., Civelekoglu, G. (2007). Adsorption of natural organic matter from water by iron coated pumice. Chemosphere, 66, 130-138.
  8. Kanakaraju, D., Ravichandar, S., Lim, Y.C. (2016). Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper. J. Environ. Sci., 55, 214-223.
  9. Wang, Y., He, Y., Lai, Q., Fan, M. (2014). Review of the progress in preparing nano TiO2: An important environmental engineering material. J. Environ. Sci., 26, 2139-2177.
  10. Wang, W., Huang, G., Yu, J.C., Wong, P.K. (2015). Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms J. Environ. Sci., 34, 232-247.
  11. Li, M., Li, Y., Peng, S., Lu, G., Li, S. (2009). Photocatalytic Hydrogen Generation Using Glycerol Wastewater Over Pt/TiO2. Frontiers of Chemistry in China, 4, 32-8.
  12. Anirudhan, T.S., Sreekumari, S.S. (2011). Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci., 23, 1989-1998.
  13. Liu, X., Wang, M., Zhang, S., Pan, B. (2013). Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci., 25, 1263-1280.
  14. Sui, Q., Huang, J., Liu, Y., Chang, X., Ji, G., Deng, S., Xie, T., Yu, G. (2011). Rapid removal of bisphenol A on highly ordered mesoporous carbon. J. Environ. Sci., 23(2), 177-182.
  15. Sanchez-Polo, M., Salhi, E., Rivera-Utrilla, J., Von Gunten, U. (2006). Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation processes. Ozone. Sci. Eng., 28, 237-245.
  16. Kasprzyk-Horderm, B., Ziolek, M., Nawrocki, J. (2003). Catalytic Ozonation dan method of enhancing molecular ozone reaction in water treatment. Appl. Catal., 46, 639-669.
  17. Ni, C.H., Chen, J.N. (2001). Heterogeneous catalytic ozonation of 2-chlorophenol aqueous solution with alumina as a catalyst. Water Sci. Technol., 43, 213–220.
  18. Liu, S., Lim, M., Amal, R., (2014). TiO2 coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci., 105, 46-52.
  19. Ratnawati, R., Gunlazuardi, J., Dewi, E.L., Slamet, S. (2014). Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution. Int. J. Hydrogen Energ., 39, 16927-16935.
  20. Slamet, S., Setiadi, S., Tristantini, D., Kusrini, E., Philo, D. (2018). Simple methods for immobilizing titania into pumice for photodegradation of phenol waste. Int. J. Ind. Chem., 9, 127-139.
  21. Mourhly, A., Khacani, M., Hamidi, A.E., Kacimi, M., Halim, M., Arsalane, S. (2015). The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomater. Nanotechno., 5, 1-7.
  22. Chuan, X.Y., Hirano, M., Inagaki, M. (2004). Preparation and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions. Appl. Catal. B: Environ., 51, 255-260.
  23. Ratnawati, R., Enjarlis, E., Slamet, S. (2017). Combination of ozonation and photocatalysis for pharmaceutical waste water treatment. AIP Conference Proceeding, 1904, 020019-1-020019-8.
  24. Raj, K.J.A., Viswanathan, B. (2009). Effect of surface area, pore volume and pore size of P25 titania on phase transformation of anatase to rutile. Indian J. Chem., 48A, 1378-1382.
  25. Trianasari, T., Manurung, P., Karo-Karo, P. (2017). Analisis dan Karakterisasi Kandungan Silica (SiO2) sebagai Hasil Ekstraksi Batu Apung (Pumice). Jurnal Teori dan Aplikasi Fisika, 05, 179-186.
  26. Liu, Y., Wang, Z., Huang, W. (2016). Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Appl. Surf. Sci., 389, 760-767.
  27. Ratnawati, R., Gunlazuardi, J., Slamet S. (2015). Development of titania nanotube arrays: the role of water content and annealing atmosphere. Mat. Chem. Phys., 160, 111-118.
  28. Valencia, S., Marin, J.M. (2010). Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticles Using the Sol-Gel Method and a Hydrothermal Treatment. Open Mat. Sci. J., 4, 9-14.
  29. Perego, M., Seguini, G., Scarel, G., Fanciulli, M., Wallrapp, F. (2008). Energy band alignment at TiO2/Si interface with various interlayers. J. Appl. Sci., 103, 043509
  30. Agustina, T.E., Ang, H.M., Vareek, V.K. (2005). A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C: Photochem. Rev., 6, 264-273.
  31. Sanchez-Polo, M., Leyva-Ramos, R., Rivera-Utrilla, J. (2005). Kinetics of 1,3,6-naphthalenetrisulphonic acid Ozonation in presence of activated carbon, Carbon, 43, 962-969.
  32. Langlais, B., David, A.R., Brink, D.R. (1991). Ozone in Water Treatment Application Engineering, Cooperative Research Report, Florida. Lewis Publishing.
  33. Gaya, U.I., Abdul, H.A. (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants Over Titanium Oxide: A Review of Fundamentals, Progress and Problems. J. Photochem. Photobiol. C: Photochem. Rev, 9, 1-12.
  34. Majidian, N., Royaee, S.J., Rahimdoust, E., Soltanali, S. (2012). Wastewater treatment using photo-impinging streams cyclone reactor. Afinidad, 69, 301-307.

No citation recorded.