Palladium(0) Nanoparticles Immobilized onto Silica/Starch Composite: Sustainable Catalyst for Hydrogenations and Suzuki Coupling

*Ravinderpal Kour Sodhi  -  Department of Chemistry, University of Jammu, India
Satya Paul  -  Department of Chemistry, University of Jammu, India
Received: 22 Feb 2019; Revised: 26 Jun 2019; Accepted: 18 Jun 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The present paper aims to give insight into the art in the field of the synthesis, characterization and applications of Pd(0) nanoparticles immobilized onto silica/starch composite (SS-PdNPs) for hydrogenations and Suzuki coupling. Metal(0) nanoparticles immobilized onto silica/starch composite [SS-MNPs] were prepared from different metal acetylacetonate complexes [Co(acac)2], [Cu(acac)2], [Pd(acac)2],  [Ru(acac)3], [Mn(acac)3], [Co(acac)3] by immobilizing onto silica/starch composite, followed by reduction with NaBH4. Excellent yield of the products, reusability and the facile work-up makes SS-PdNPs a unique catalyst for the reduction of nitroarenes/carbonyl compounds, a,b unsaturated carbonyl compounds and Suzuki coupling under environmentally benign reaction conditions. All the catalysts were characterized by Fourier Transform Infra Red (FTIR), Atomic Absorption Spectroscopy (AAS) analyses,  while the most active catalyst [SS-PdNPs] was further characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Copyright © 2019 BCREC Group. All rights reserved

Keywords: Silica/starch composite; palladium(0) nanoparticles; hydrogenations; Suzuki coupling; heterogeneous catalysis

Article Metrics:

  1. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for foodpackaging: a review. Trends in Food Science and Technology, 19: 634-643.
  2. Karim, A.A., Tie, A.P.L., Manan, D.M.A., Zaidul, I.S.M. (2008). Starch from the Sago (Metroxylon sagu) Palm Tree-Properties, Prospects, and Challenges as a New Industrial Source for Food and Other Uses. Comprehensive Reviews in Food Science and Food Safety, 7: 215–228.
  3. Gutowska, A., Jeong, B., Jasionowski, M. (2001). Injectable gels for tissue engineering. Anat. Rec, 263: 342-349.
  4. Livage, J., Coradin, T., Roux, C. (2001). Encapsulation of biomolecules in silica gel. J. Phys. Condens. Matter, 13: 673-691.
  5. Ren, L., Tsuru, K., Hayahawa, S., Osaka, A. (2002). A Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials, 23: 4765-4773.
  6. Sakai, S., Ono, T., Ijima, H., Kawakami, K. (2002). In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl silicate/alginate membrane for bioartificial pancreas. Biomaterials, 23: 4177-4183.
  7. Schuleit, M., Luisi, P.L. (2001). Enzyme immobilization in silica‐hardened organogels. Biotechnol. Bioeng., 72: 249-253.
  8. Alebooyeh, R., Nafchi, A.M., Jokar, M. (2012). The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films. J. Chem. Heath Risks, 2: 13-16.
  9. Nafchi, A.M., Moradpour, M., Saeidi, M., Alias, A.K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch-Srarke, 65: 61-72.
  10. Li, J.H., Hong, R.Y., Li, M.Y., Li, H.Z., Zheng, Y.J. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat., 64: 504-509.
  11. Laun, J., Wang, S., Hu, Z., Zhang, L. (2012). Synthesis Techniques, Properties and Applications of Polymer Nanocomposites. Curr. Org. Synth., 9: 114-136.
  12. Reddy, J.K., Motokura, K., Koyama, T., Miyaji, A., Baba, T. (2012). Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. J. Catal., 289: 53-61.
  13. Pushkarev, V.V., An. K., Alayoglu, S., Beaumont, S.K., Somorjai, G.A. (2012). Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: Elucidation of the Pt particle size effect on reaction kinetics. J. Catal., 292: 64-72.
  14. Pogorelic, I., Litvic, M.F., Merkas, S., Ljubic, G., Cepanec, I., Litvic, M. (2007). Rapid, efficient and selective reduction of aromatic nitro compounds with sodium borohydride and Raney nickel. J. Mol. Catal. A: Chem., 274: 202-207.
  15. Maity, R., Meer, M.V., Hohloch, S., Sarkar, B. (2015). Di- and Trinuclear Iridium(III) Complexes with Poly-Mesoionic Carbenes Synthesized through Selective Base-Dependent Metalation. Organometallics, 34: 3090-3096.
  16. Mahdavi, H., Tamami, B. (2005). Reduction of nitro-aryl compounds with zinc in the presence of poly[N-(2-aminoethyl)acrylamido] trimethylammonium chloride as a phase-transfer catalyst. Synth. Commun., 35: 1121-1127.
  17. Smith, G.V., Nothesiz, F. (1999). Heterogeneous Catalysis in Organic Chemistry. Academic Press, New York.
  18. Scheuerman, R.A., Tumelty, D. (2000). The reduction of aromatic nitro groups on solid supports using sodium hydrosulfite (Na2S2O4). Tetrahedron Lett., 41: 6531-6535.
  19. Kumar, J.S.D., Ho, M.M., Toyokuni, T. (2001). Simple and chemoselective reduction of aromatic nitro compounds to aromatic amines: reduction with hydriodic acid revisited. Tetrahedron Lett., 42: 5601-5604.
  20. Mdleleni, M.M., Rinker, R., Ford, P.C. (2003). Reduction of aromatic nitro compounds as catalyzed by rhodium trichloride under water–gas shift reaction conditions. J. Mol. Catal. A: Chem., 204-205: 125-131.
  21. Chen, Y., Qiu, J., Wang, X., Xiu, J. (2006). Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. J. Catal., 242: 227-230.
  22. Kumbhar, P.S., Valnte, J.S., Figueras, F. (1998). Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of the iron(III) oxide-MgO catalyst prepared from a MgFe hydrotalcite precursor. Tetrahedron Lett., 39: 2573-2574.
  23. Ghosh, S.K., Mandal, M., Kundu, S., Nath, S., Pal, T. (2004). Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A: Gen., 268: 61-66.
  24. Ren, P.D., Pan, S.F., Dang, T.W., Wu, H.S. (1995). The Novel Reduction Systems: NaBH4-SbCl3 OR NaBH4-BiCl3 for Conversion of Nitroarenes to Primary Amines. Synth. Commun., 25: 3799-3803.
  25. Nagaraja, D., Pasha, M.A. (1999). Reduction of aryl nitro compounds with aluminiumNH4Cl: effect of ultrasound on the rate of the reaction. Tetrahedron Lett., 40: 7855-7858.
  26. Yu, C., Liu, B., Hu, L. (2001). Samarium(0) and 1,1‘-Dioctyl-4,4‘-Bipyridinium Dibromide: A Novel Electron-Transfer System for the Chemoselective Reduction of Aromatic Nitro Groups. J. Org. Chem., 66: 919-924.
  27. Rylander, P.N. (1967). Catalytic Hydrogenation over Platinum Metals, Academic Press, New York 21.
  28. Sterk, D., Stephan, M.S., Mohar, B. (2004). Transfer hydrogenation of activated ketones using novel chiral Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes. Tetrahedron Lett., 45: 535-537.
  29. Kaluzna, I.A., Feske, B.D., Wittayanan, W., Ghiviriga, I., Stewart, J.D. (2005). Stereoselective, Biocatalytic Reductions of a-Chloro-b-keto Esters. J. Org. Chem., 70: 342-345.
  30. Cook, P.L. (1962). Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite. J. Org. Chem., 27: 3873-3877.
  31. Figadhre, B., Chaboche, C., Franck, X., Peyrat, J.F., Cave, A. (1994). Carbonyl reduction of functionalized Aldehydes and Ketone by Tri-n-butyltin Hydride and SiO2. J. Org. Chem., 59: 7138-7141.
  32. Babler, J.H., Sarussi, S.J. (1981). Reduction of aldehydes and ketones using sodium formate in 1-methyl-2-pyrrolidinone. J. Org. Chem., 46: 3367-3369.
  33. Zhang, W., Shi, M. (2006). Reduction of activated carbonyl groups by alkylphosphines: formation of a-hydroxy esters and ketones. Chem. Commun., 1218-1220.
  34. Wang, Z.G., Wroblewski, A.E., Verkade, J.G. (1999). P(MeNCH2CH2)3N: An Efficient Promoter for the Reduction of Aldehydes and Ketones with Poly(methylhydrosiloxane). J. Org. Chem., 64: 8021-8023.
  35. Sarkar, D.C., Das, A.R., Ranu, B.C. (1990). Use of zinc borohydride as an efficient and highly selective reducing agent. Selective reduction of ketones and conjugated aldehydes over conjugated enones. J. Org. Chem., 55: 5799-5801.
  36. Kim, J., De Castro, K.A., Lim, M., Rhee, H. (2010). Reduction of aromatic and aliphatic keto esters using sodium borohydride/MeOH at room temperature: a thorough investigation. Tetrahedron, 66: 3995-4001.
  37. Borch, R.F., Bernstein, M.D., Durst, H.D. (1971). Cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc., 93: 2897-2904.
  38. Cha, J.S., Moon, S.J., Park, J.H. (2001), A Solution of Borane in Tetrahydrofuran. A Stereoselective Reducing Agent for Reduction of Cyclic Ketones to Thermodynamically More Stable Alcohols. J. Org. Chem., 66: 7514-7515.
  39. Burkhardt, E.R., Matos, K. (2006). Boron Reagents in Process Chemistry: Excellent Tools for Selective Reductions. Chem. Rev., 106: 2617-2650.
  40. Lee, H.Y., An, M. (2003). Selective 1,4-reduction of unsaturated carbonyl compounds using Co2(CO)8–H2O. Tetrahedron Lett., 44: 2775-2778.
  41. Yu, H.T., Kang, R.H., Yang, X.M.O. (2000). Recent Development in the Selective Reduction of α,β-Unsaturated Carbonyl Compounds. Chin. J. Org. Chem., 20: 441-453.
  42. McCarthy, M., Guiry, P.J. (2001). Axially chiral bidentate ligands in asymmetric catalysis. Tetrahedron, 57: 3809-4058.
  43. Hazarika, M.J., Barua, N.C. (1989). A simple procedure for selective reduction of a,b-unsaturated carbonyl compounds using Al-NiCl2system. Tetrahedron Lett., 30: 6567-6570.
  44. Petrier, C., Luche, J.L. (1987). Ultrasonically improved reductive properties of an aqueous ZnNiCl2 system-1 selective reduction of a,b-unsaturated carbonyl compounds. Tetrahedron Lett., 28: 2347-2350.
  45. Alonso, F., Osante, I., Yus, M. (2006). Conjugate Reduction of a,b-Unsaturated Carbonyl Compounds Promoted by Nickel Nanoparticles. Synlett., 18: 3017-3020.
  46. Saikia, A., Barthakur, M.G., Boruah, R.C. (2005). Efficient Role of Mg-ZnCl2 for Selective Reduction of a,b-Unsaturated ­Carbonyl Compounds in Aqueous Medium. Synlett., 3: 523-525.
  47. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M. (2002). Aryl−Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 102: 1359-1469.
  48. Smith, M.B., March, J. (1992). Advanced Organic Chemistry, 4th ed.; Wiley: New York, pp 539.
  49. Kovacic, P., Jones, M.B. (1987). Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev., 87: 357-379.
  50. Gomberg, M., Bachmann, W.E. (1924). The synthesis of biaryl compounds by means of the diazo reaction. J. Am. Chem. Soc., 42: 2339-2343.
  51. Smith, M.B., March, J. (1992). Advanced Organic Chemistry, 4th ed.; Wiley: New York, pp 715.
  52. Ullman, F., Bielecki, J. (1901). Ueber Synthesen in der Biphenylreihe. J. Chem. Ber., 34: 2174-2185.
  53. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M. (2002). Aryl−Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 102: 1359-1469.
  54. Miura, M., Nomura, M. (2002). Direct Arylation via Cleavage of Activated and Unactivated C-H Bonds. Top. Curr. Chem., 219: 212-237.
  55. Kosugi, M., Sasazawa, K., Shimizu, Y., Migita, T. (1977). Reactions of allyltin compounds iii. allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(o). Chem. Lett., 6: 301-302.
  56. Kosugi, M., Shimizu, Y., Migita, T. (1977). Alkylation, arylation, and vinylation of acyl chlorides by means of organotin compounds in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(o). Chem. Lett., 6: 1423-1424.
  57. Kosugi, M., Hagiwara, I., Migita, T. (1983). 1-Alkenylation on α-position of ketone: palladium-catalyzed reaction of tin enolates and 1-bromo-1-alkenes. Chem. Lett., 12: 839-840.
  58. Stille, J.K. (1986). The Palladium‐Catalyzed Cross‐Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angew. Chem. Int. Ed., 25: 508-524.
  59. King, O., Okukado, N., Negishi, E. (1977). Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc., Chem. Commun., 19: 683-684.
  60. Lipshutz, B.H., Siegmann, K., Garcia, E., Kayser, F. (1993). Synthesis of unsymmetrical biaryls via kinetic higher order cyanocuprates: scope, limitations, and spectroscopic insights. J. Am. Chem. Soc., 115: 9276-9282.
  61. Miyaura, N., Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev., 95: 2457-2483.
  62. Tamao, K., Sumitani, K., Kumada, M. (1972). Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc., 94: 4374-4376.
  63. Corriu, R.J.P., Masse, J.P. (1972). Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J. Chem. Soc., Chem. Commun., 3: 144a.
  64. Kumada, M. (1980). Nickel and palladium complex catalyzed cross-coupling reactions of organometallic reagents with organic halides. Pure Appl. Chem., 52: 669-679.
  65. Marion, N., Navarro, O., Mei, J., Stevens, E.D., Scott, N.M., Nolan, S.P. (2006). Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki−Miyaura and Buchwald−Hartwig Reactions. J. Am. Chem. Soc., 128: 4101-4111.
  66. Billingsley, K.L., Anderson. K.W., Buchwald, S.L. (2006). A Highly Active Catalyst for Suzuki-Miyaura Cross-Coupling Reactions of Heteroaryl Compounds. Angew. Chem. Int. Ed., 45: 3484-3488.
  67. Maity, R., Mekic, A., Meer, M.V., Verma, A., Sarkar, B. (2015). Triply cyclometalated trinuclear iridium(III) and trinuclear palladium(II) complexes with a tri-mesoionic carbene ligand. Chem. Commun., 51: 15106-15109.
  68. Majumder, A., Naskar, R., Roy, P., Maity, R. (2019). Homo‐ and Heterobimetallic Complexes Bearing NHC Ligands: Applications in α‐Arylation of Amide, Suzuki–Miyaura Coupling Reactions, and Tandem Catalysis. Eur. J. Inorg. Chem., 2019: 1810-1815.
  69. Sodhi, R.K., Paul, S. (2015). Conversion of α,β-unsaturated ketones to 1,5-diones via tandem retro-Aldol and Michael addition using Co(acac)2 covalently anchored onto amine functionalized silica. Tetrahedron Lett., 56: 1944-1948.
  70. Sodhi, R.K., Changotra, A., Paul, S. (2014). Metal Acetylacetonates Covalently Anchored onto Amine Functionalized Silica/Starch Composite for the One-Pot Thioetherification and Synthesis of 2H-Indazoles. Catal Lett., 144:1819-1831.
  71. Sodhi, R.K., Paul, S., Clark, J.H. (2012). A comparative study of different metal acetylacetonates covalently anchored onto amine functionalized silica: a study of the oxidation of aldehydes and alcohols to corresponding acids in water. Green Chem., 14:1649-1656.
  72. Sodhi, R.K., Paul, S. (2011). Nanosized Mn(acac)3 Anchored on Amino Functionalized Silica for the Selective Oxidative Synthesis of 2-arylbenzimidazoles, 2-arylbenzothiazoles and Aerobic Oxidation of Benzoins in Water. Catal Lett., 141: 608-615.
  73. Jamwal, N., Sodhi, R.K., Gupta, P., Paul, S. (2011). Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 49: 930-935.

No citation recorded.