Selective Conversion of 2-Methylfuran to 1,4-Pentanediol Catalyzed by Bimetallic Ni-Sn Alloy

*Rodiansono Rodiansono orcid scopus  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Astuti Maria Dewi orcid  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Sadang Husain orcid  -  Department of Physics, Lambung Mangkurat University, Indonesia
Agung Nugroho orcid  -  Department of Agro-industrial Engineering, Faculty of Agriculture, Lambung Mangkurat University, Indonesia
Sutomo Sutomo orcid  -  Department of Pharmacy, Lambung Mangkurat University, Indonesia
Received: 12 Feb 2019; Revised: 26 Apr 2019; Accepted: 29 Apr 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The selective conversion of 2-methylfuran (2-MeF) to 1,4-pentanediol (1,4-PeD) over bimetallic nickel-tin alloy catalysts in the ethanol/H2O solvent mixture was studied. By using bulk Ni-Sn(x); x = 3.0 and 1.5 catalysts, a maximum yield of 1,4-PeD (49%) was obtained at 94% conversion of 2-MeF. The dispersion of Ni-Sn(x) on the aluminium hydroxide (AlOH) or g-Al2O3 supports allowed to an outstanding yield of 1,4-PeD (up to 64%) at 433 K, 3.0 MPa of H2 within 12 h. Ni-Sn(3.0)/AlOH catalyst was found to be reusable and the treatment of the recovered Ni-Sn(3.0)/AlOH catalyst with H2 at 673 K for 1 h restored the catalyst’s original activity and selectivity. Copyright © 2019 BCREC Group. All rights reserved


Keywords: Ni-Sn alloy catalysts; selective conversion; 2-methylfuran; 1,4-pentanediol; 2-methyltetrahydrofuran

Article Metrics:

  1. Dutta, S., Mascal, M. (2014). Novel pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural. ChemSusChem. 7: 3028-3030.
  2. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., Granados, M.L. (2016). Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energy Environmental Sciences. 9: 1144-1189.
  3. Xing, R., Qi, W., Huber, G.W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy Environmental Sciences. 4: 2193-2205.
  4. Burnette, L.W., Johns, I.B., Holdren, R.F., Hixon, R.M. (1948). Production of 2-methylfuran by vapor-phase hydrogenation of furfural. Industrial Engineering Chemistry. 40(3): 502-505.
  5. Kang, J., Liang, X., Gulliants, V.V. (2016). Selective hydrogenation of 2-methylfuran and 2,5-dimethylfuran over atomic layer deposited Pt catalysts on multi-walled carbon nanotube and alumina supports. ChemCatChem. 9(2): 282–286.
  6. Aliaga, C., Tsung, C.-K., Alayoglu, S., Komvopoulos, K., Yang, P., Somorjai, G.A. (2011). Sum frequency generation vibrational spectroscopy and kinetic study of 2-methylfuran and 2,5-dimethylfuran hydrogenation over 7 nm platinum cubic nanoparticles. Journal Physical Chemistry C. 115: 8104-8109.
  7. Kang, J., Vonderheide, A., Guliants, V.V. (2015). Deuterium-labeling study of the hydrogenation of 2-methylfuran and 2,5-dimethylfuran over carbon-supported noble metal catalysts. ChemSusChem. 8: 3044-3047.
  8. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry. 19: 2876-2924.
  9. Werle, P., Morawietz, M., Lundmark, S., Sörensen, K., Karvinen, E., Lehtonen, J. (2008). Alcohols, Polyhydric. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.
  10. Schniepp, L.E., Geller, H.H, Von Korff, R.W. (1947). The preparation of acetopropyl alcohol and 1,4-pentanediol from 2-methylfuran. Journal of American Chemical Society. 69: 672-674.
  11. Whiting, J.E., Edward, J.T. (1971). Ring–Chain Tautomerism of Hydroxyketones. Canadian Journal of Chemistry. 49(23): 3799-3806.
  12. Soós, J. (1987). Mechanism of the formation of 5-hydroxy-2-pentanone from 2-methylfuran in alkaline media. Reaction Kinetics and Catalysis Letters. 34(2): 333-337.
  13. Zolotarev, N.S., Latvis, P.P., Buimov, A.A., Sirotenko, V.I., Lisnyanskii, I.M., Novikova, K.E., Bogatyrev, Yu.V., Zhhanovich, E.S. (1972). A study of the process of preparing g-acetopropyl alcohol from furfural. Khimiko-Farmasevticheskii Zhurnal. 6(3): 52-56.
  14. Perchenok, M.Sh., Sevchenko, V.S., Komarov, V.M., Zavel`skii, D.Z. (1976). Continous method of obtaining 3-acetylpropan-1-ol from methylfuran. Khimiko-Farmasevticheskii Zhurnal. 10(2): 91-96.
  15. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science & Technology. 2: 2139-2145.
  16. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni­-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chemistry Letters. 41: 769-771.
  17. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2016). Efficient hydrogenation of levulinic acid in water using a supported Ni-Sn alloy on aluminium hydroxide catalysts. Catal. Sci. Technol. 6: 2955-2961.
  18. Rodiansono, R., Ghofur, A., Astuti, M.D., Sembiring, K.C. (2015). Catalytic hydrogenation of levulinic acid in water into g-valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts, Bulletin Chemical Reaction Engineering & Catalysis.10(2): 192-200.
  19. Lowell, S., Shields, J. E., Thomas, M.A., Thommes, M. (2004) Characterization of porous solids and powders: surface area, pore size and density, Kluwer Academic Publishers, Netherlands, Chapter 8.
  20. Bartholomew, C.H., Pannel, R.B. (1980). The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina- and silica-supported nickel. Journal of Catalysis. 65: 390-401.
  21. SDBS Web: (National Institute of Advanced Science and Technology, 2018. 10.03)
  22. Powder diffraction file, JCPDS-International center for diffraction data (ICDDS), 1991.
  23. Rietica Web:, Multi-Rietveld Analysis Program LH-Riet 7.200 on the Rietica software, 2018.01.10.
  24. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. (2001). Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. Journal of Crystall Growth. 233: 567-582.
  25. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. (2002). Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Applied Surface Science. 187: 218-234.
  26. Miranda, B.C., Chimentao, R.J., Santos, J.B.O., Gispert-Guirado, F., Llorca, J., Medina, F., Bonillo, F.L., Sueiras, J.E. (2014). Conversion of glycerol over 10%Ni/γ-Al2O3 catalyst. Applied Catalysis B: Environment. 147: 464-480.
  27. Liu, C., Hou, R., Wang, T. (2015). Role of acid sites and surface hydroxyl groups in isophthalonitrile hydrogenation catalyzed by supported Ni–Co catalysts. RSC Advances. 5: 26465-26474.
  28. Onda, A., Komatsu, T., Yashima, T. (2003). Characterizations and catalytic properties of fine particles of Ni–Sn intermetallic compounds supported on SiO2. Journal of Catalysis. 221: 378-385.
  29. Hlukhyy, V., Raif, F., Clauss, P., Fässler, T.F. (2008). Polar intermetallic compounds as catalysts for hydrogenation reactions: Synthesis, structures, bonding, and catalytic properties of Ca1-xSrxNi4Sn2 (x = 0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2. Chemistry European Journal. 14: 3737-3744.
  30. Zhang, B., Zhu, Y., Ding, G., Zheng, H., Li, Y. (2012). Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase. Green Chemistry. 14: 3402-3409.
  31. Ma, R., Wu, X.P., Tong, T., Shao, Z.J., Wang, Y., Liu, X., Xia, Q., Gong, Xu. Q. (2017). The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol. ACS Catalysis. 7: 333-337.
  32. Sordelli, L., Psaro, R., Vlaic, G., Cepparo, A., Recchia, S., Fusi, A., Zanoni, R. (1999). EXAFS studies of supported Rh–Sn catalysts for citral hydrogenation. Journal of Catalysis. 182: 186-198.
  33. Margitfalvi, J.L., Tompos, A., Kolosova, I., Valyon, J. (1998). Reaction induced selectivity improvement in the hydrogenation of crotonaldehyde over Sn-Pt/SiO2 catalysts. Journal of Catalysis. 174: 246-249.
  34. Eastman, E.D., Robinson, P. (1928). Equilibrium in the reactions of tin with water vapor and carbon dioxide. Journal of American Chemical Society. 50(4): 1106-1114.
  35. Gutbezahl, B., Grunwald, E. (1953). The acidity and basicity scale in the system ethanol-water. The evaluation of degenerate activity coefficients for single ions. Journal of American Chemical Society. 75(3): 565-574.
  36. Roses, M., Rafols, C., Bosch, E. (1993). Autoprotolysis in aqueous organic solvent mixtures. Analytical Chemistry. 65: 2294-2299.
  37. Piancatelli, G., D’Auria, M., D’Onofrio, F. (1994). Synthesis of 1,4-dicarbonyl compounds and cyclopentenone from furan. Synthesis. 867-889.
  38. Hu, X., Westerhof, R.J.M., Wu, L., Dong, D., Li, C.Z. (2015). Upgrading
  39. biomass-derived furans via acid-catalysis/hydrogenation: The remarkable difference between water and methanol as the solvent. Green Chemistry. 17: 219-224.
  40. Leuck, G.J., Pokorny, J., Peters, F.N. (1937). Preparation of polyhydroxy compounds from furan compounds. U.S. Patents. 2,097,493.
  41. Götz, D., Lucas, M., Claus, P. (2016). C–O bond hydrogenolysis vs. C=C group hydrogenation of furfuryl alcohol: Towards sustainable synthesis of 1,2-pentanediol. Reaction Chemistry Engineering. 1: 161-164.
  42. Marakatti, V.S., Arora, N., Rai, S., Sarma, S.Ch., Peter, S.C. (2018). Understanding the role of atomic ordering in the crystal structures of NixSny toward efficient vapor phase furfural hydrogenation. ACS Sustainable Chemistry Engineering. 6(6): 7325-7338.
  43. Liu, F., Liu, Q., Xu, J., Li, L., Cui, Y.-T., Lang, R., Li, L., Su, Y., Miao, S., Sun, H., Qiao, B., Wang, A., Jerome, F., Zhang, T. 2018. Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chemistry. 20: 1770-1776.
  44. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21: 2307-2315

No citation recorded.