Selective Conversion of 2-Methylfuran to 1,4-Pentanediol Catalyzed by Bimetallic Ni-Sn Alloy

*Rodiansono Rodiansono orcid scopus  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Astuti Maria Dewi orcid  -  Department of Chemistry, Lambung Mangkurat University, Indonesia
Sadang Husain orcid  -  Department of Physics, Lambung Mangkurat University, Indonesia
Agung Nugroho orcid  -  Department of Agro-industrial Engineering, Faculty of Agriculture, Lambung Mangkurat University, Indonesia
Sutomo Sutomo orcid  -  Department of Pharmacy, Lambung Mangkurat University, Indonesia
Received: 12 Feb 2019; Revised: 26 Apr 2019; Accepted: 29 Apr 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The selective conversion of 2-methylfuran (2-MeF) to 1,4-pentanediol (1,4-PeD) over bimetallic nickel-tin alloy catalysts in the ethanol/H2O solvent mixture was studied. By using bulk Ni-Sn(x); x = 3.0 and 1.5 catalysts, a maximum yield of 1,4-PeD (49%) was obtained at 94% conversion of 2-MeF. The dispersion of Ni-Sn(x) on the aluminium hydroxide (AlOH) or g-Al2O3 supports allowed to an outstanding yield of 1,4-PeD (up to 64%) at 433 K, 3.0 MPa of H2 within 12 h. Ni-Sn(3.0)/AlOH catalyst was found to be reusable and the treatment of the recovered Ni-Sn(3.0)/AlOH catalyst with H2 at 673 K for 1 h restored the catalyst’s original activity and selectivity. Copyright © 2019 BCREC Group. All rights reserved


Keywords: Ni-Sn alloy catalysts; selective conversion; 2-methylfuran; 1,4-pentanediol; 2-methyltetrahydrofuran
Funding: JSPS-DGHE through Joint Bilateral Research Project FY 2014-2017, KLN and International Publication Project of DGHE FY 2015-2016 under grant number of DIPA-023-04.1.673453/2016, and Penelitian Berbasis Kompetensi (PBK) FY 2017-2018 under grant number of DI

Article Metrics:

  1. Dutta, S., Mascal, M. (2014). Novel pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural. ChemSusChem. 7: 3028-3030
  2. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., Granados, M.L. (2016). Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energy Environmental Sciences. 9: 1144-1189
  3. Xing, R., Qi, W., Huber, G.W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy Environmental Sciences. 4: 2193-2205
  4. Burnette, L.W., Johns, I.B., Holdren, R.F., Hixon, R.M. (1948). Production of 2-methylfuran by vapor-phase hydrogenation of furfural. Industrial Engineering Chemistry. 40(3): 502-505
  5. Kang, J., Liang, X., Gulliants, V.V. (2016). Selective hydrogenation of 2-methylfuran and 2,5-dimethylfuran over atomic layer deposited Pt catalysts on multi-walled carbon nanotube and alumina supports. ChemCatChem. 9(2): 282–286
  6. Aliaga, C., Tsung, C.-K., Alayoglu, S., Komvopoulos, K., Yang, P., Somorjai, G.A. (2011). Sum frequency generation vibrational spectroscopy and kinetic study of 2-methylfuran and 2,5-dimethylfuran hydrogenation over 7 nm platinum cubic nanoparticles. Journal Physical Chemistry C. 115: 8104-8109
  7. Kang, J., Vonderheide, A., Guliants, V.V. (2015). Deuterium-labeling study of the hydrogenation of 2-methylfuran and 2,5-dimethylfuran over carbon-supported noble metal catalysts. ChemSusChem. 8: 3044-3047
  8. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry. 19: 2876-2924
  9. Werle, P., Morawietz, M., Lundmark, S., Sörensen, K., Karvinen, E., Lehtonen, J. (2008). Alcohols, Polyhydric. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co
  10. Schniepp, L.E., Geller, H.H, Von Korff, R.W. (1947). The preparation of acetopropyl alcohol and 1,4-pentanediol from 2-methylfuran. Journal of American Chemical Society. 69: 672-674
  11. Whiting, J.E., Edward, J.T. (1971). Ring–Chain Tautomerism of Hydroxyketones. Canadian Journal of Chemistry. 49(23): 3799-3806
  12. Soós, J. (1987). Mechanism of the formation of 5-hydroxy-2-pentanone from 2-methylfuran in alkaline media. Reaction Kinetics and Catalysis Letters. 34(2): 333-337
  13. Zolotarev, N.S., Latvis, P.P., Buimov, A.A., Sirotenko, V.I., Lisnyanskii, I.M., Novikova, K.E., Bogatyrev, Yu.V., Zhhanovich, E.S. (1972). A study of the process of preparing g-acetopropyl alcohol from furfural. Khimiko-Farmasevticheskii Zhurnal. 6(3): 52-56
  14. Perchenok, M.Sh., Sevchenko, V.S., Komarov, V.M., Zavel`skii, D.Z. (1976). Continous method of obtaining 3-acetylpropan-1-ol from methylfuran. Khimiko-Farmasevticheskii Zhurnal. 10(2): 91-96
  15. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science & Technology. 2: 2139-2145
  16. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni­-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chemistry Letters. 41: 769-771
  17. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2016). Efficient hydrogenation of levulinic acid in water using a supported Ni-Sn alloy on aluminium hydroxide catalysts. Catal. Sci. Technol. 6: 2955-2961
  18. Rodiansono, R., Ghofur, A., Astuti, M.D., Sembiring, K.C. (2015). Catalytic hydrogenation of levulinic acid in water into g-valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts, Bulletin Chemical Reaction Engineering & Catalysis.10(2): 192-200
  19. Lowell, S., Shields, J. E., Thomas, M.A., Thommes, M. (2004) Characterization of porous solids and powders: surface area, pore size and density, Kluwer Academic Publishers, Netherlands, Chapter 8
  20. Bartholomew, C.H., Pannel, R.B. (1980). The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina- and silica-supported nickel. Journal of Catalysis. 65: 390-401
  21. SDBS Web: (National Institute of Advanced Science and Technology, 2018. 10.03)
  22. Powder diffraction file, JCPDS-International center for diffraction data (ICDDS), 1991
  23. Rietica Web:, Multi-Rietveld Analysis Program LH-Riet 7.200 on the Rietica software, 2018.01.10
  24. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. (2001). Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. Journal of Crystall Growth. 233: 567-582
  25. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. (2002). Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Applied Surface Science. 187: 218-234
  26. Miranda, B.C., Chimentao, R.J., Santos, J.B.O., Gispert-Guirado, F., Llorca, J., Medina, F., Bonillo, F.L., Sueiras, J.E. (2014). Conversion of glycerol over 10%Ni/γ-Al2O3 catalyst. Applied Catalysis B: Environment. 147: 464-480
  27. Liu, C., Hou, R., Wang, T. (2015). Role of acid sites and surface hydroxyl groups in isophthalonitrile hydrogenation catalyzed by supported Ni–Co catalysts. RSC Advances. 5: 26465-26474
  28. Onda, A., Komatsu, T., Yashima, T. (2003). Characterizations and catalytic properties of fine particles of Ni–Sn intermetallic compounds supported on SiO2. Journal of Catalysis. 221: 378-385
  29. Hlukhyy, V., Raif, F., Clauss, P., Fässler, T.F. (2008). Polar intermetallic compounds as catalysts for hydrogenation reactions: Synthesis, structures, bonding, and catalytic properties of Ca1-xSrxNi4Sn2 (x = 0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2. Chemistry European Journal. 14: 3737-3744
  30. Zhang, B., Zhu, Y., Ding, G., Zheng, H., Li, Y. (2012). Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase. Green Chemistry. 14: 3402-3409
  31. Ma, R., Wu, X.P., Tong, T., Shao, Z.J., Wang, Y., Liu, X., Xia, Q., Gong, Xu. Q. (2017). The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol. ACS Catalysis. 7: 333-337
  32. Sordelli, L., Psaro, R., Vlaic, G., Cepparo, A., Recchia, S., Fusi, A., Zanoni, R. (1999). EXAFS studies of supported Rh–Sn catalysts for citral hydrogenation. Journal of Catalysis. 182: 186-198
  33. Margitfalvi, J.L., Tompos, A., Kolosova, I., Valyon, J. (1998). Reaction induced selectivity improvement in the hydrogenation of crotonaldehyde over Sn-Pt/SiO2 catalysts. Journal of Catalysis. 174: 246-249
  34. Eastman, E.D., Robinson, P. (1928). Equilibrium in the reactions of tin with water vapor and carbon dioxide. Journal of American Chemical Society. 50(4): 1106-1114
  35. Gutbezahl, B., Grunwald, E. (1953). The acidity and basicity scale in the system ethanol-water. The evaluation of degenerate activity coefficients for single ions. Journal of American Chemical Society. 75(3): 565-574
  36. Roses, M., Rafols, C., Bosch, E. (1993). Autoprotolysis in aqueous organic solvent mixtures. Analytical Chemistry. 65: 2294-2299
  37. Piancatelli, G., D’Auria, M., D’Onofrio, F. (1994). Synthesis of 1,4-dicarbonyl compounds and cyclopentenone from furan. Synthesis. 867-889
  38. Hu, X., Westerhof, R.J.M., Wu, L., Dong, D., Li, C.Z. (2015). Upgrading
  39. biomass-derived furans via acid-catalysis/hydrogenation: The remarkable difference between water and methanol as the solvent. Green Chemistry. 17: 219-224
  40. Leuck, G.J., Pokorny, J., Peters, F.N. (1937). Preparation of polyhydroxy compounds from furan compounds. U.S. Patents. 2,097,493
  41. Götz, D., Lucas, M., Claus, P. (2016). C–O bond hydrogenolysis vs. C=C group hydrogenation of furfuryl alcohol: Towards sustainable synthesis of 1,2-pentanediol. Reaction Chemistry Engineering. 1: 161-164
  42. Marakatti, V.S., Arora, N., Rai, S., Sarma, S.Ch., Peter, S.C. (2018). Understanding the role of atomic ordering in the crystal structures of NixSny toward efficient vapor phase furfural hydrogenation. ACS Sustainable Chemistry Engineering. 6(6): 7325-7338
  43. Liu, F., Liu, Q., Xu, J., Li, L., Cui, Y.-T., Lang, R., Li, L., Su, Y., Miao, S., Sun, H., Qiao, B., Wang, A., Jerome, F., Zhang, T. 2018. Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chemistry. 20: 1770-1776
  44. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21: 2307-2315

Last update: 2021-05-07 07:13:21

No citation recorded.

Last update: 2021-05-07 07:13:21

  1. One-pot selective conversion of biomass-derived furfural into cyclopentanone/Cyclopentanol over TiO2 supported bimetallic Ni-M (M = Co, Fe) catalysts

    Astuti M.D.. Bulletin of Chemical Reaction Engineering & Catalysis, 15 (1), 2020. doi: 10.9767/bcrec.15.1.6307.231-241