Effect of Dilute Acid and Alkaline Pretreatments on Enzymatic Saccharfication of Palm Tree Trunk Waste for Bioethanol Production

*Kusmiyati Kusmiyati -  Dept. of Industrial Engineering, Universitas Dian Nuswantoro , Semarang, Indonesia
Sakina Tunissa Anarki -  Departement of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta , Jl. A. Yani Tromol Pos 1, Pabelan, Kartasura 57102, Surakarta, Indonesia
Sabda Wahyu Nugroho -  Departement of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta , Jl. A. Yani Tromol Pos 1, Pabelan, Kartasura 57102, Surakarta, Indonesia
Reistu Widiastutik -  Departement of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta , Jl. A. Yani Tromol Pos 1, Pabelan, Kartasura 57102, Surakarta, Indonesia
Hadiyanto Hadiyanto -  Department of Chemical Engineering, Diponegoro University, Indonesia
Received: 25 Jan 2019; Revised: 2 Jul 2019; Accepted: 15 Jul 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Article Info
Section: The 3rd International Conference on Chemical and Material Engineering 2018 (ICCME 2018)
Language: EN
Full Text:
Statistics: 68 94
Abstract

The sugar palm tree (Arenga pinnata) was abundant in Indonesia and has high cellulose contents for bioethanol production. However, the lignin content was the major drawback which could inhibit saccharification enzymes and therefore removing the lignin from the biomass is important. This paper evaluated the effects of pretreatments  using nitric acid (HNO3) and ammonium hydroxide (NH4OH) at 2 to 10% (v/v) on reducing sugar and ethanol contents and compared with the effects of steam pre-treatment. The pretreated samples were hydrolyzed using cellulase enzymes at pH 5.0 with a substrate concentration of 10% (w/v) for 24 to 72 h at 50 °C. Subsequent assessments of enzymatic saccharification following pre-treatment with 10% (v/v) HNO3 showed maximum reducing   and total sugar contents in palm tree trunk waste of 5.320% and 5.834%, respectively, after 72 h of saccharification. Following pretreatment with 10% (v/v) of NH4OH, the maximum reducing and total sugar contents of palm tree trunk waste were 2.892% and 3.556%, respectively, after 72 h of saccharification. In comparison, steam pretreatments gave maximum reducing sugar and total sugar contents of 1.140% and 1.315% under the same conditions. Simultaneous saccharification and fermentation (SSF) was conducted at 37 °C (pH 4.8) and 100 rpm for 120 h using 10% (v/v) Saccharomyces cerevisiae and cellulase enzyme with a substrate concentration of 10% (w/v). The result showed the highest ethanol content of 2.648% was achieved by using 10% (v/v) HNO3. The use of 10% (v/v) NH4OH gained a yield of 0.869% ethanol while the steam pretreatment could obtained 0.102% ethanol.  Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Bioethanol; lignocellulose; substrate concentration; dilute acid pretreatment; alkaline pretreatment; SSF

Article Metrics:

  1. E.I.A. (EIA), (2016). Total Petroleum Consumption.
  2. Rozenfelde, L., Puke, M., Kruma, I., Popele, L., Matjuskova, N., Vedernikovs, N., Rapoport, A. (2017). Enzymatic hydrolysis of lignocellulose for bioethanol production. Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci., 71(4): 275–279.
  3. Mustafa, A.M., Poulsen, T.G., Sheng, K. (2016). Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy, 180: 661–671.
  4. Filho, L.C.G., Fischer, G.A.A., Sellin, N., Marangoni, C., Souza, O. (2013). Hydrolysis of Banana Tree Pseudostem and Second-Generation Ethanol Production by. J. Environ. Sci. Eng., 2: 65–69.
  5. Umamaheswari, M., Jayakumari, M., Maheswari, K., Subashree, M., Mala, P., Sevanthi, T., Manikandan, T. (2010). Bioethanol production from cellulosic materials. Int. J. Curr. Res., 1: 005–011.
  6. Sanchez, O.J., Cardona, C.A. (2008). Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks. Bioresour. Technol., 99: 5270–5295.
  7. Tsigie, Y.A., Wu, C.H., Huynh, L.H., Ismadji, S., Ju, Y.H. (2013). Bioethanol production from Yarrowia lipolytica Po1g biomass. Bioresour. Technol., 145: 210–216.
  8. Ahmed, I.N., Nguyen, P.L.T., Huynh, L.H., Ismadji, S., Ju, Y.H. (2013). Bioethanol production from pretreated Melaleuca leucadendron shedding bark - Simultaneous saccharification and fermentation at high solid loading. Bioresour. Technol., 136: 213–221.
  9. Deshavath, N.N., Dasu, V.V., Goud, V.V., Rao, P.S. (2017). Development of dilute sulfuric acid pretreatment method for the enhancement of xylose fermentability. Biocatal. Agric. Biotechnol., 11: 224–230.
  10. Galbe, M., Zacchi, G. (2007). Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. Adv. Biochem. Engin / Biotechnol., 108: 41–65.
  11. Maurya, D.P., Singla, A., Negi, S. (2015). An Overview of Key Pretreatment Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol, 3 Biotech, 5: 597–609.
  12. Sahari, J., Sapuan, S.M., Ismarrubie, Z.N., Rahman, M.Z.A. (2012). Physical and Chemical Properties of Different Morphological Parts of Sugar Palm Fibres. FIBRES Text., 2(91): 21–24.
  13. Mosier, N., Wyman, C., Dale, B., Elender, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005). Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresour. Technol., 96: 673–686.
  14. Verardi, A., De Bari, I., Ricca, E., Calabrò, V. (2012). Hydrolysis of
  15. Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives,” In: M.A.P. Lima, A.P.P. Natalense (ed), Bioethanol. In Tech, pp. 95–122.
  16. Taherzadeh, M.J., Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResour., 2(4): 707–738.
  17. Gautam, S.P., Bundela, P.S., Pandey, A.K., Khan, J., Awasthi, M.K., Sarsaiya, S. (2011). Optimization for the Production of Cellulase Enzyme from Municipal Solid Waste Residue by Two Novel Cellulolytic Fungi. Biotechnol. Res. Int., 2011: 1–8.
  18. Martín, C., Galbe, M., Wahlbom, F., Hahn-Hägerdal, B., Jönsson, L.J. (2002). Ethanol Production from Enzymatic Hydrolysates of Sugarcane Bagasse using Recombinant Xylose-Utilising Saccharomyces cerevisiae. Enzyme Microb. Technol., 31: 274–282.
  19. Kusmiyati, K. Sulistiyono, A. (2014). Utilization of Iles-Iles and Sorghum Starch for Bioethanol Production. Int. J. Renew. Energy Dev., 3(2): 83–89.
  20. Peláez, H.C. (2013). Simultaneous Saccharification and Fermentation of Cassava Stems Sacarificación Y Fermentación Silmutánea De Tallos. Dyna, 80: 97–104.
  21. Wu, Z., Lee, Y.Y. (1998). Nonisothermal Simultaneous Saccharification and Fermentation for Direct Conversion of Lignocellulosic Biomass to Ethanol. Biochem. Biotechnol., 70–72: 479–492.
  22. Kusmiyati, K., Maryanto, D., Sonifa, R., Kurniawan, S.A., Hadiyanto, H. (2018). Pretreatment of Starch-Free Sugar Palm Trunk (Arenga pinnata) to Enhance Saccharification in Bioethanol Production. MATEC Web Conf., 156: 1-6.
  23. Kádár, Z., Szengyel, Z., Réczey, K. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. in Ind. Crops and Prod., 20: 103-110.
  24. Timung, R., Deshavath, N.N., Goud, V.V., Dasu, V.V. (2016). Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass. J. Energy, 2016: 1–12.
  25. Ayeni, A.O., Adeeyo, O.A., Oresegun, O.M., Oladimeji, T.E. (2015). Compositional Analysis of Lignocellulosic Materials : Evaluation of An Economically Viable Method Suitable for Woody and Non-Woody Biomass. Am. J. Eng. Res., 4(4): 14–19.
  26. Miller, G.L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem., 31(3): 426–428.
  27. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28(3): 350–356.
  28. Wang, M.-L., Choong, Y.-M., Su, N.-W., Lee, M.-H. (2003). A Rapid Method for Determination of Ethanol in Alcoholic Beverages Using Capillary Gas Chromatography. J. Food Drug Anal., 11(2): 133–140.
  29. Dwivedi, P., Alavalapati, J.R.R., Lal, P. (2009). Cellulosic Ethanol Production in the United States : Conversion Technologies, Current Production Status, Economics, and Emerging Developments. Energy Sustain. Dev., 13: 174–182.
  30. Tutt, M., Kikas, T., Olt, J. (2012). Comparison of Different Pretreatment Methods on Degradation of Rye Straw. Eng. Rural Dev., 24: 412–416.
  31. Zheng, Y., Pan, Z., Zhang, R. (2009). Overview of Biomass Pretreatment for Cellulosic Ethanol Production. Int. J. Agric. Biol. Eng., 2(3): 51–68.
  32. Duangwang, S., Sangwichien, C. (2013). Optimizing Alkali Pretreatment of Oil Palm Empty Fruit Bunch for Ethanol Production by Application of Response Surface Methodology. Adv. Mater. Res., 622–623: 117–121.
  33. Kim, I., Lee, B., Park, J.Y., Choi, S.A., Han, J.I. (2014). Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr. Polym., 99: 563–567.
  34. Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., Sakovich, G.V. (2017). Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem. Eng. J., 126: 118–125.
  35. Sritrakul, N., Nitisinprasert, S., Keawsompong, S. (2017). Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric. Nat. Resour., 51(6): 512–519.
  36. Saha, P., Baishnab, A.C., Alam, F., Khan, M.R., Islam, A. (2014). Production of bio-fuel (bio-ethanol) from biomass (pteris) by fermentation process with yeast. Proc. Eng., 90: 504–509.
  37. Zhu, Z.S., Zhu, M.J., Xu, W.X., Liang, L. (2012). Production of bioethanol from sugarcane bagasse Using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnol. Bioproc. Eng., 17(2): 316–325.
  38. Zakpaa, H.D., Mak-Mensah, E.E., Johnson, F.S. (2009). Production of Bio-ethanol from Corncobs Using Aspergillus niger and Saccharomyces cerevisae in Simultaneous Saccharification and Fermentation. African J. Biotechnol., 8(13): 3018–3022.
  39. Yang, F., Afzal, W., Cheng, K., Pauly, M., Bell, A.T., Liu, Z., Prausnitzl., J.M. (2015). Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol. Biotechnol. Bioproc. Eng., 20(2): 304–314.
  40. Poornejad, N., Karimi, K., Behzad, T. (2014). Ionic Liquid Pretreatment of Rice Straw to Enhance Saccharification and Bioethanol Production. J. Biomass to Biofuel, 1(1):8–15.
  41. Han, M., Kang, K.E., Kim, Y., Choi, G. (2013). High Efficiency Bioethanol
  42. Production from Barley Straw Using A Continuous Pretreatment Reactor. Proc. Biochem., 48(3): 488–495.
  43. Sharma, S., Sharma, V., Kuila, A. (2016). Cellulase Production Using Natural Medium and Its Application on Enzymatic Hydrolysis of Thermo Chemically Pretreated Biomass. 3 Biotech, 6(139): 1–11.