Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan

*Ratnawati Ratnawati  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275,, Indonesia
Aji Prasetyaningrum  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275,, Indonesia
Dyah Hesti Wardhani  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275,, Indonesia
Received: 10 Nov 2015; Revised: 18 Jan 2016; Accepted: 19 Jan 2016; Published: 1 Apr 2016; Available online: 10 Mar 2016.
Open Access Copyright (c) 2016 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The ultrasound-assisted depolymerization of κ-carrageenan has been studied at various temperatures and times. The κ-carrageenan with initial molecular weight of 545 kDa was dispersed in water to form a 5 g/L solution, which was then depolymerized in an ultrasound device at various temperatures and times. The viscosity of the solution was measured using Brookfield viscometer, which was then used to find the number-average molecular weight by Mark-Houwink equation. To obtain the kinetics of κ-carrageenan depolymerization, the number-average molecular weight data was treated using midpoint-chain scission kinetics model. The pre-exponential factor and activation energies for the reaction are 2.683×10-7 mol g-1 min-1 and 6.43 kJ mol-1, respectively. The limiting molecular weight varies from 160 kDa to 240 kDa, and it is linearly correlated to temperature. The results are compared to the result of thermal depolymerization by calculating the half life. It is revealed that ultrasound assisted depolymerization of κ-carrageenan is faster than thermal depolymerization at temperatures below 72.2°C. Compared to thermal depolymerization, the ultrasound-assisted process has lower values of Ea, ΔG, ΔH, and ΔS, which can be attributed to the ultrasonically induced breakage of non-covalent bonds in κ-carrageenan molecules. Copyright © 2016 BCREC GROUP. All rights reserved

Received: 10th November 2015; Revised: 18th January 2016; Accepted: 19th January 2016

How to Cite: Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1): 48-58. (doi:10.9767/bcrec.11.1.415.48-58)


Article Metrics: (click on the button below to see citations in Scopus)

cited by count 

Keywords: Depolymerization; Half life; Limiting molecular weight; Midpoint-chain scission; κ-carrageenan

Article Metrics:

  1. Campo, V. L., Kawano, D. F., da Silva Jr., D.B., Carvalho, I. (2009). Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis – A Review. Carbohydrate Polymers, 77: 167-180.
  2. Yao, Z., Wu, H., Zhang, S., Du, Y. (2014). Enzymatic Preparation of κ-Carrageenan Oligosaccharides and Their Anti-Angiogenic Activity. Carbohydrate Polymers, 101: 359-367.
  3. Haijin, M. Xiaolu, J., Huashi, G. (2013). A k-carrageenan Derived Oligosaccharide Prepared by Enzymatic Degradation Containing Anti-tumor Activity. Journal of Applied Phycology, 15: 297-303.
  4. Raman, R., Doble, M. (2015). κ-Carrageenan from marine red algae, Kappaphycus alvarezii – A Functional Food to Prevent Colon Carcinogenesis. Journal of Functional Foods, 15: 354-364.
  5. Carlucci, M. J., Ciancia, M., Matulewicz, M. C., Cerezo, A. S., Damonte, E. B. (1999). Antiherpetic Activity and Mode of Action of Natural Carrageenans of Diverse Structural Types. Antiviral Research, 43: 93-102.
  6. Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. (2000). Preparation of O-Acylated Low-Molecular-Weight Carrageenans with Potent Anti-HIV Activity and Low Anticoagulant Effect. Carbohydrate Polymers, 41: 115-…...
  7. Chiu, Y.-H., Chan, Y.-L., Tsai, L.-W., Li, T.-L., Wu, C.-J. (2012). Prevention of Human Enterovirus 71 Infection by Kappa Carrageenan. Antivar Research, 95: 128-134.
  8. Silva, F. R. F., Dore, C. M. P. G., Marques, C. T., Nascimento, M. S., Benevides, N. M. B., Rocha, H. A. O., Chavante, S. F., Leite, E. L. (2010). Anticoagulant Activity, Paw Edema and Pleurisy Induced Carrageenan: Action of Major Types of Commercial Carrageenans. Carbohydrate Polymers, 79: 26-33.
  9. Gomez-Ordonez, E., Jimenez-Escrig, A., Rupérez, P. (2014). Bioactivity of Sulfated Polysaccharides from the Edible Red Seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 3: 29-40.
  10. de Souza, L. A. R., Dore, C. M. P. G., Castro, A. J. G., de Azevedo, T. C. G., de Oliveira, M. T. B., Moura, M. F. V., Benevides, N. M. B., Leite, E. L. (2012). Galactans from the Red Seaweed Amansia multifida and Their Effects on Inflammation, Angiogenesis, Coagulation and Cell Viability. Biomedicine & Preventive Nutrition, 2: 154-162.
  11. Lai, V. M.-F., Lii, C.-Y., Hung, W.-L., Lu, T.-J. (2000). Kinetic Compensation Effect in Depolymerisation of Food Polysaccharides. Food Chemistry, 68: 319-325.
  12. Singh, S. K., Jacobson, S. P. (1994). Kinetics of Acid Hydrolysis of κ-Carrageenan as Determined by Molecular Weight (SEC-MALLSRI), Gel Breaking Strength, and Viscosity Measurements. Carbohydrate Polymers, 23: 89-103.
  13. Karlsson, A., Singh, S. K. (1999). Acid Hydrolysis of Sulphated Polysaccharides. Desulphation and the Effect on Molecular Mass. Carbohydrate Polymers, 38: 7-15.
  14. Yang, B., Yu, G., Zhao, X., Jiao, G., Ren, S., Chai, W. (2009). Mechanism of Mild Acid Hydrolysis of Galactan Polysaccharides with Highly Ordered Disaccharide Repeats Leading to A Complete Series of Exclusively Odd-numbered Oligosaccharides. FEBS Journal, 276: 2125-2137.
  15. doi: 10.1111/j.1742-4658.2009.06947.x
  16. Tang, F., Chen, F., Li, F. (2013). Preparation and Potential in Vivo Anti-influenza Airus Activity of Low Molecular-Weight κ-Carrageenans and Their Derivatives. Journal of Applied Polymer Science, 127: 2110-2115. doi: 10.1002/app.37502
  17. Kalitnik, A. A., Barabanova, A. O. B., Nagorkaya, V. B., Reunov, A. V., Glazunov, V. P., Solov’eva, T. F., Yermak, I. M. (2013). Low Molecular Weight Derivatives of Different Carrageenan Types and Their Antiviral Activity. Journal of Applied Phycology, 25: 65-72.
  18. Collén, P. N., Lemoine, M., Daniellou, R., Guégan, J.-P., Paoletti, S., Helbert, W. (2009). Enzymatic Degradation of κ-Carrageenan in Aqueous Solution. Biomacromolecules, 10: 1757-1767
  19. Wu, S.-J. (2012). Degradation of κ-Carrageenan by Hydrolysis with Commercial a-Amylase. Carbohydrate Polymers, 89: 394-396.
  20. Abad, L. V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fub, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L. S., Aranilla, C. T., DeLaRosa, A. M. (2010). Radiolysis Studies of Aqueous κ-Carrageenan. Nuclear Instruments and Methods in Physics Research B, 268: 1607-1612.
  21. Lii, C.-Y., Chen, C.-H., Yeh, A.-I., Lai, V. M.-F. (1999). Preliminary Study on the Degradation Kinetics of Agarose and Carrageenans by Ultrasound. Food Hydrocolloids, 13: 477-481.
  22. Taghizadeh, M. T., Abdollahi, R. (2015). Influence of Different Degradation Techniques on the Molecular Weight Distribution of κ-Carrageenan. International Journal of Biochemistry and Biophysics, 3: 25-33. DOI: 10.13189/ijbb.2015.030301
  23. Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., Rosiak, J. M. (2005). Degradation of Chitosan and Starch by 360-kHz Ultrasound. Carbohydrate Polymers, 60: 175-184.
  24. Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., Youssef, M. M. (2012), Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food Research International, 48: 410-427.
  25. Akyüz, A., Catalgil-Giz, H., Giz, A. T. (2008). Kinetics of Ultrasonic Polymer Degradation: Comparison of Theoretical Models with On-Line Data. Macromolecular Chemistry and Physics, 209: 801-809.
  26. Suslick, K. S., Flannigan, D. (2008). Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation. Annual Review of Physical Chemistry, 59: 659-683.
  27. Suslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T. T., Kolbeck, K. J., McNamara III, W. B., Mdleleni, M. M., Wong, M. (1999). Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society A, 357: 335-353.
  28. Didenko, Y. T., McNamara III, W. B., Suslick, K. S. (1999). Hot Spot Conditions during Cavitation in Water. Journal of the American Chemical Society, 121: 5817-5818.
  29. Madras, G., Kumar, S., Chattopadhyay, S. (2000). Continuous Distribution Kinetics for Ultrasonic Degradation of Polymers. Polymer Degradation and Stability, 69: 73-78.
  30. Chakraborty, J., Sarkar, J., Kumar, R., Madras, G. (2004). Ultrasonic Degradation of Polybutadiene and Isotactic Polypropylene. Polymer Degradation and Stability, 85: 555-558.
  31. Popa-Nita, S., Lucas, J.-M., Ladavière, C., David, L., Domard, A. (2009). Mechanisms Involved During the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control. Biomacromolecules, 10: 1203-1211.
  32. Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., Liu, D. (2013). Ultrasound Effects on the Degradation Kinetics, Structure and Rheological Properties of Apple Pectin. Ultrasonics Sonochemistry, 20: 222-231.
  33. Guo, X., Ye, X., Sun, Y., Wu, D., Wu, N., Hu, Y., Chen, S. (2014). Ultrasound Effects on the Degradation Kinetics, Structure, and Antioxidant Activity of Sea Cucumber Fucoidan. Journal of Agricultural and Food Chemistry, 62: 1088-1095.
  34. Peterson and, G. I., Boydston, A. J. (2014). Kinetic Analysis of Mechanochemical Chain Scission of Linear Poly(phthalaldehyde). Macromolecular Rapid Communications, 35: 1611-.
  35. Yan, J.-K., Peia, J.-J., Ma, H.-L., Wang, Z.-B. (2015). Effects of Ultrasound on Molecular Properties, Structure, Chain Conformation and Degradation Kinetics of Carboxylic Curdlan. Carbohydrate Polymers, 121: 64-70.
  36. Vreeman, H. J., Snoeren, T. H. M., Payens, T. A. J. (1980). Physicochemical Investigation of κ-Carrageenan in the Random State. Biopolymers, 19: 1357-1354.
  37. Tanford, C. (1961). Physical Chemistry of Macromolecules. John Wiley & Sons, Inc. New York.
  38. McCoy, B. J., Madras, G. (1997). Degradation Kinetics of Polymers in Solution: Dynamics of Molecular Weight Distributions. AIChE Journal, 43: 802-810.
  39. Mahalik, J. P., Madras, G. (2005). Effect of Alkyl Group Substituents, Temperature, and Solvents on the Ultrasonic Degradation of Poly(n-Alkyl Acrylates). Industrial & Engineering Chemistry Research, 44: 6572-6577
  40. Daraboina, N., Madras, G. (2009). Kinetics of the Ultrasonic Degradation of Poly(Alkyl Methacrylates). Ultrasonics Sonochemistry, 16: 273-279.
  41. Yen, H.-Y., Yang, M.-H. (2003). The Ultrasonic Degradation of Polyacrylamide Solution. Polymer Testing, 22: 129-131.
  42. Kasaai, M. R., Arul, J., Charlet, G. (2008). Fragmentation of Chitosan by Ultrasonic Irradiation. Ultrasonics Sonochemistry, 15: 1001-1008.
  43. Ma, H., Huang, L., Jia, J., He, R., Luo, L., Zhu, W. (2011). Effect of Energy-Gathered Ultrasound on Alcalase. Ultrasonics Sonochemistry, 18: 419-424.
  44. Savitri, E., Juliastuti, S. R., Handaratri, A., Sumarno, Roesyadi, A. (2014). Degradation of Chitosan by Sonication in Very-Low-Concentration Acetic Acid. Polymer Degradation and Stability, 110: 344-352.
  45. Prajapat, A. L., Subhedar, P. B., Gogate, P. R. (2016). Ultrasound Assisted Enzymatic Depolymerization of Aqueous Guar Gum Solution. Ultrasonics Sonochemistry, 29: 84-92.
  46. Nie, M., Wang, Q., Qiu, G. (2008). Enhancement of Ultrasonically Initiated Emulsion Polymerization Rate Using Aliphatic Alcohols As Hydroxyl Radical Scavengers. Ultrasonics Sonochemistry, 15: 222-226.
  47. Guo Z., Feng, R. (2009). Ultrasonic Irradiation-Induced Degradation of Low-Concentration Bisphenol A in Aqueous Solution. Journal of Hazardous Materials, 163: 855-860.
  48. Gogate, P. R., Prajapat, A. L. (2015). Depolymerization Using Sonochemical Reactors: A Critical Review. Ultrasonics Sonochemistry, 27: 480-494.
  49. Li, X., Xu, A., Xie, H., Yu, W., Xie, W., Ma, X. (2010). Preparation of Low Molecular Weight Alginate by Hydrogen Peroxide Depolymerization for Tissue Engineering. Carbohydrate Polymers, 79: 660-664.
  50. Hill, Jr., C. G., Root, T. W. (2014). Introduction to Chemical Engineering Kinetics and Reactor Design. John Wiley & Sons, Inc., Hoboken, New Jersey.
  51. Jin, J., Ma, H., Qu, W., Wang, K., Zhou, C., He, R., Owusu, J., Luo, L. (2015). Effects of Multi-Frequency Power Ultrasound on the Enzymolysis of Corn Gluten Meal: Kinetics and Thermodynamics Study. Ultrasonics Sonochemistry, 27: 46-53.
  52. Cornish-Bowden, A. (2012). Fundamentals of Enzyme Kinetics. Wiley-Blackwell, Weinheim.
  53. Upadhyay, S. K. (2006). Chemical Kinatics and Reaction Dynamics. Anamaya Publishers, New Delhi.

Last update: 2021-01-20 15:56:34

No citation recorded.

Last update: 2021-01-20 15:56:34

No citation recorded.