skip to main content

Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

1Department of Chemical & Materials Engineering, the University of Auckland, Auckland 1142, New Zealand

2Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia

Received: 10 Nov 2015; Revised: 7 Jan 2016; Accepted: 7 Jan 2016; Published: 1 Apr 2016; Available online: 10 Mar 2016.
Open Access Copyright (c) 2016 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Titanium dioxide (TiO2) has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV) can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm) and shows a relatively good photocatalytic activity in organic dye (Rhodamine B) degradation under visible light irradiation compared with the commercial TiO2. 

Fulltext View|Download
Keywords: Colored Titania; Photocatalysis; Photodegradation; TiO2; Visible Light Absorption

Article Metrics:

Article Info
Section: The 2nd International Conference on Chemical and Material Engineering 2015
Statistics:
Share:
  1. Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238: 37-38
  2. Park, H., Park, Y., Kim, W., Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15: 1-20
  3. Liu, L., Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114: 9890-9918
  4. Chen, X., Liu, L., Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44: 1861-1885
  5. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114: 9919-9986
  6. Xia, T., Zhang, Y., Murowchick, J., Chen, X. (2014). Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today, 225: 2-9
  7. Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., Liu, P., Shi, X., Wang, D. (2010). Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and Their Location. Langmuir, 26: 9686-9694
  8. Wang, Z., Helmersson, U., Käll, P. (2002). Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films, 405: 50-54
  9. Wang, H., Lin, T., Zhu, G., Yin, H., Lü, X., Li, Y., Huang, F. (2015). Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catalysis Communications, 60: 55-59
  10. Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48: 53-229
  11. Pan, J., Maschhoff, B.L., Diebold, U., Madey, T.E. (1992). Interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities. Journal of Vacuum Science & Technology A 10(4): 2470-2476
  12. Henderson, M.A., Epling, W.S., Perkins, C.L., Peden, C.H.F., Diebold, U. (1999). Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2 (110) Surface: Molecular and Dissociative Channels. The Journal of Physical Chemistry B, 103: 5328-5337
  13. Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z., Manivannan, A., Zhi, M., Li, M., Wu, N. (2009). Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. Journal of the American Chemical Society, 131: 12290-12297
  14. Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., Gao, W. (2014). Defective Black TiO2 Synthesized via Anodization for Visible-Light Photocatalysis. ACS Applied Materials & Interfaces, 6: 1385-1388
  15. Lin, T., Yang, C., Wang, Z., Yin, H., Lu, X., Huang, F., Lin, J., Xie, X., Jiang, M. (2014). Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy & Environmental Science, 7: 967-972
  16. Zhu, G., Yin, H., Yang, C., Cui, H., Wang, Z., Xu, J., Lin, T., Huang, F. (2015). Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. ChemCatChem, 7: 2614-2619
  17. Serpone, N. (2006). Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? The Journal of Physical Chemistry B, 110: 24287-24293
  18. Hamdam Momen, M., Amadeh, A., Heydarzadeh Sohi, M., Moghanlou, Y. (2014). Photocatalytic properties of ZnO nanostructures grown via a novel atmospheric pressure solution evaporation method. Materials Science and Engineering: B, 190: 66-74
  19. Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C. L., Psaro, R., Dal Santo, V. (2012). Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. Journal of the American Chemical Society, 134: 7600-7603
  20. Yan, C., Yi, W., Yuan, H., Wu, X., Li, F. (2014). A highly photoactive S, Cu-codoped nano-TiO2 photocatalyst: Synthesis and characterization for enhanced photocatalytic degradation of neutral red. Environmental Progress & Sustainable Energy, 33: 419-429
  21. Kurtz, R.L., Stock-Bauer, R., Msdey, T.E., Román, E., De Segovia, J. (1989). Synchrotron radiation studies of H2O adsorption on TiO2 (110). Surface Science, 218: 178-200
  22. Henderson, M.A., Epling, W.S., Peden, C.H. F., Perkins, C.L. (2003). Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110). The Journal of Physical Chemistry B, 107: 534-545

Last update:

No citation recorded.

Last update: 2021-09-20 00:03:01

  1. Preface, BCREC Vol. 11 No. 1 year 2016

    Istadi I.. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1), 2016. doi: 10.9767/bcrec.11.1.441.v-vii
  2. Synthesis of free standing TiO2 nanostructures (FSTNS) via hydrothermal process for organic photocatalytic degradation

    Ariyanti D.. AIP Conference Proceedings, 127 , 2020. doi: 10.1063/1.5140915
  3. Tailoring amount of TiO2 doped onto fibrous silica ZSM-5 for enhanced photodegradation of paracetamol

    Aziz F.F.A.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/808/1/012017
  4. NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity

    Ariyanti D.. Materials Chemistry and Physics, 127 , 2017. doi: 10.1016/j.matchemphys.2017.07.054