skip to main content

A System of Photocatalysis for NAD+ Regeneration of Product of (S)-1-Pheylethanol by Enzymic Catalysis

Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, 210094, China

Received: 18 Dec 2018; Revised: 27 Feb 2019; Accepted: 5 Mar 2019; Available online: 30 Apr 2019; Published: 1 Aug 2019.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

In this study, a system of photocatalysis for NAD+ regeneration of enzymatic catalysis was constructed. The optimal conditions for the coupling reaction of photocatalysis and biocatalysis were explored. Blue light was chosen for the efficient reaction and the optimal concentration of VB2 (vitamin B2, riboflavin) was determined. NAD+-dependent (R)-1-phenylethanol dehydrogenase was used in the reaction for transforming (R)-1-phenylethanol to acetophenone. The byproducts of the reaction were just H2O and O2 by means of catalase. The coupling reaction of catalysis and photocatalysis can be used for obtaining (S)-1-phenylethanol through racemization of 1-phenylethanol. 

Fulltext View|Download
Keywords: NAD+; Photocatalysis; Biocatalysis; Riboflavin; (R)-1-phenylethanol dehydrogenase

Article Metrics:

  1. Xuan, J., Xiao, W.J. (2012) Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 51: 6828-6838
  2. Rauch, M., Schmidt, S., Arends, I.W.C.E., Oppelt, K., Kara, S., Hollmann, F. (2017). Photobiocatalytic alcohol oxidation using LED light sources. Green Chem. 19: 376-379
  3. Skubi, K.L., Blum, T.R., Yoon, T.P. (2016) Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 116: 10035-10074
  4. Perutz, R.N., Procacci, B. (2016) Photochemistry of Transition Metal Hydrides. Chem. Rev. 116: 8506-8544
  5. Brimioulle, R., Lenhart, D., Maturi, M.M., Bach, T. (2015) Enantioselective Catalysis of Photochemical Reactions. Angew. Chem. Int. Ed. 54: 3872-3890
  6. Schmid, A., Dordick, J.S., Hauer, B., Kiener, A., Wubbolts, M., Witholt, B. (2001) Industrial biocatalysis today and tomorrow. Nature 409: 258-268
  7. Taglieber, A., Schulz, F., Hollmann, F., Rusek, M., Reetz, M.T. (2008) Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. ChemBioChem 9: 565-572
  8. Bühler, B., Schmid, A. (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J. Biotech. 113: 183-210
  9. Alphand, V., Carrea, G., Wohlgemuth, R., Furstoss, R., Woodley, J.M. (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 21: 318-323
  10. Hilker, I., Wohlgemuth, R., Alphand, V.R., Furstoss, R. (2005) Microbial Transformations 59: First Kilogram Scale Asymmetric Microbial Baeyer-Villiger Oxidation with Optimized Productivity Using a Resin-Based in situ SFPR Strategy. Biotechnol. Bioeng. 92: 702-710
  11. Wang, J., Yang, C., Chen, X. (2016) A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD+ regeneration. Biotechnol. Lett. 38: 1315-1320
  12. Kato, N., Yamagami, T., Shimao, M., Sakazawa, C. (1987) Regeneration of NAD(H) covalently bound to formate dehydrogenase with several second enzymes. Appl. Microbiol. Biot. 25: 415-418
  13. Ali, I., Soomro, B., Omanovic, S. (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential. Electrochem. Commun. 13: 562-565
  14. Délécouls-Servat, K., Bergel, A., Basséguy, R. (2004). Membrane electrochemical reactors (MER) for NADH regeneration in HLADH-catalysed synthesis: comparison of effectiveness. Bioproc. Biosyst. Eng. 26: 204-215
  15. Nam, D.H., Park, C.B. (2012) Visible Light-Driven NADH Regeneration Sensitized by Proflavine for Biocatalysis. ChemBioChem 13: 1278-1282
  16. Nam, D.H., Kuk, S.K., Choe, H. (2016) Enzymatic photosynthesis of formate from carbon dioxide coupled with highly efficient photoelectrochemical regeneration of nicotinamide cofactors. Green Chem. 18: 5989-5993
  17. Lee, S.H., Kim, J.H., Park, C.B. (2013) Coupling Photocatalysis and Redox Biocatalysis Toward Biocatalyzed Artificial Photosynthesis. Chem. -Eur. J. 19: 4392-4406
  18. Jones, J.B., Taylor, K.E. (1973) Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols. J. Chem. Soc. Chem. Commun., 6(6): 205-206
  19. Martinez-Haya, R., Miranda, M.A., Marin, M.L. (2017) Metal-Free Photocatalytic Reductive Dehalogenation Using Visible-Light: A Time-Resolved Mechanistic Study. Eur. J. Org. Chem. 2017: 2164-2169
  20. Heelis, P.F. (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11: 15-39
  21. Zhang, X., Yang, J., Yang, C., Chen, X., Bao, B., Li, D., Shi, R., Wang, J., Pu, S., Zhang, X., (2018). Purification and Characterization of a Novel (R)-1-Phenylethanol Dehydrogenase from Lysinibacillus sp. NUST506. Applied Biochemistry and Microbiology. 54: 149-154
  22. Wang, M., Yuan, W. (2015) Microalgal cell disruption in a high-power ultrasonic flow system. Bioresource Technol. 193: 171-177
  23. Han, Y., Chen, H. (2010) A β-xylosidase from cell wall of maize: Purification, properties and its use in hydrolysis of plant cell wall. J. Mol. Catal. B: Enzym. 63: 135-140
  24. Zhou, S., Zhang, S., Lai, D., Zhang, S., Chen, Z. (2013) Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans. Biotechnol. Lett. 35: 359-365
  25. Yanai, H., Doi, K., Ohshima, T. (2009) Sulfolobus tokodaii ST0053 Produces a Novel Thermostable, NAD-Dependent Medium-Chain Alcohol Dehydrogenase. Appl. Environ. Microb. 75: 1758-1763
  26. Hirakawa, H., Kamiya, N., Kawarabayashic, Y., Nagamunea, T. (2004) Properties of an Alcohol Dehydrogenase from the Hyperthermophilic Archaeon Aeropyrum pernix K1. J. Biosci. Bioeng. 97: 202-206

Last update:

No citation recorded.

Last update:

No citation recorded.