A System of Photocatalysis for NAD+ Regeneration of Product of (S)-1-Pheylethanol by Enzymic Catalysis

Shujin Pu -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Xuan Zhang -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Han Huang -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Chengli Yang -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
*Dali Li -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Junfang Yang -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Jie Ouyang -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Xing Chen -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Sidra Naseer -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Ruofu Shi -  Department of Bioengineering, Nanjing University of Science & Technology , Nanjing, 210094, China
Received: 18 Dec 2018; Revised: 27 Feb 2019; Accepted: 5 Mar 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

In this study, a system of photocatalysis for NAD+ regeneration of enzymatic catalysis was constructed. The optimal conditions for the coupling reaction of photocatalysis and biocatalysis were explored. Blue light was chosen for the efficient reaction and the optimal concentration of VB2 (vitamin B2, riboflavin) was determined. NAD+-dependent (R)-1-phenylethanol dehydrogenase was used in the reaction for transforming (R)-1-phenylethanol to acetophenone. The byproducts of the reaction were just H2O and O2 by means of catalase. The coupling reaction of catalysis and photocatalysis can be used for obtaining (S)-1-phenylethanol through racemization of 1-phenylethanol. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
NAD+; Photocatalysis; Biocatalysis; Riboflavin; (R)-1-phenylethanol dehydrogenase

Article Metrics:

  1. Xuan, J., Xiao, W.J. (2012) Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 51: 6828-6838.
  2. Rauch, M., Schmidt, S., Arends, I.W.C.E., Oppelt, K., Kara, S., Hollmann, F. (2017). Photobiocatalytic alcohol oxidation using LED light sources. Green Chem. 19: 376-379.
  3. Skubi, K.L., Blum, T.R., Yoon, T.P. (2016) Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 116: 10035-10074.
  4. Perutz, R.N., Procacci, B. (2016) Photochemistry of Transition Metal Hydrides. Chem. Rev. 116: 8506-8544.
  5. Brimioulle, R., Lenhart, D., Maturi, M.M., Bach, T. (2015) Enantioselective Catalysis of Photochemical Reactions. Angew. Chem. Int. Ed. 54: 3872-3890.
  6. Schmid, A., Dordick, J.S., Hauer, B., Kiener, A., Wubbolts, M., Witholt, B. (2001) Industrial biocatalysis today and tomorrow. Nature 409: 258-268.
  7. Taglieber, A., Schulz, F., Hollmann, F., Rusek, M., Reetz, M.T. (2008) Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. ChemBioChem 9: 565-572.
  8. Bühler, B., Schmid, A. (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J. Biotech. 113: 183-210.
  9. Alphand, V., Carrea, G., Wohlgemuth, R., Furstoss, R., Woodley, J.M. (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 21: 318-323
  10. Hilker, I., Wohlgemuth, R., Alphand, V.R., Furstoss, R. (2005) Microbial Transformations 59: First Kilogram Scale Asymmetric Microbial Baeyer-Villiger Oxidation with Optimized Productivity Using a Resin-Based in situ SFPR Strategy. Biotechnol. Bioeng. 92: 702-710.
  11. Wang, J., Yang, C., Chen, X. (2016) A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD+ regeneration. Biotechnol. Lett. 38: 1315-1320.
  12. Kato, N., Yamagami, T., Shimao, M., Sakazawa, C. (1987) Regeneration of NAD(H) covalently bound to formate dehydrogenase with several second enzymes. Appl. Microbiol. Biot. 25: 415-418.
  13. Ali, I., Soomro, B., Omanovic, S. (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential. Electrochem. Commun. 13: 562-565.
  14. Délécouls-Servat, K., Bergel, A., Basséguy, R. (2004). Membrane electrochemical reactors (MER) for NADH regeneration in HLADH-catalysed synthesis: comparison of effectiveness. Bioproc. Biosyst. Eng. 26: 204-215.
  15. Nam, D.H., Park, C.B. (2012) Visible Light-Driven NADH Regeneration Sensitized by Proflavine for Biocatalysis. ChemBioChem 13: 1278-1282.
  16. Nam, D.H., Kuk, S.K., Choe, H. (2016) Enzymatic photosynthesis of formate from carbon dioxide coupled with highly efficient photoelectrochemical regeneration of nicotinamide cofactors. Green Chem. 18: 5989-5993.
  17. Lee, S.H., Kim, J.H., Park, C.B. (2013) Coupling Photocatalysis and Redox Biocatalysis Toward Biocatalyzed Artificial Photosynthesis. Chem. -Eur. J. 19: 4392-4406.
  18. Jones, J.B., Taylor, K.E. (1973) Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols. J. Chem. Soc. Chem. Commun., 6(6): 205-206.
  19. Martinez-Haya, R., Miranda, M.A., Marin, M.L. (2017) Metal-Free Photocatalytic Reductive Dehalogenation Using Visible-Light: A Time-Resolved Mechanistic Study. Eur. J. Org. Chem. 2017: 2164-2169.
  20. Heelis, P.F. (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11: 15-39.
  21. Zhang, X., Yang, J., Yang, C., Chen, X., Bao, B., Li, D., Shi, R., Wang, J., Pu, S., Zhang, X., (2018). Purification and Characterization of a Novel (R)-1-Phenylethanol Dehydrogenase from Lysinibacillus sp. NUST506. Applied Biochemistry and Microbiology. 54: 149-154
  22. Wang, M., Yuan, W. (2015) Microalgal cell disruption in a high-power ultrasonic flow system. Bioresource Technol. 193: 171-177.
  23. Han, Y., Chen, H. (2010) A β-xylosidase from cell wall of maize: Purification, properties and its use in hydrolysis of plant cell wall. J. Mol. Catal. B: Enzym. 63: 135-140.
  24. Zhou, S., Zhang, S., Lai, D., Zhang, S., Chen, Z. (2013) Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans. Biotechnol. Lett. 35: 359-365.
  25. Yanai, H., Doi, K., Ohshima, T. (2009) Sulfolobus tokodaii ST0053 Produces a Novel Thermostable, NAD-Dependent Medium-Chain Alcohol Dehydrogenase. Appl. Environ. Microb. 75: 1758-1763.
  26. Hirakawa, H., Kamiya, N., Kawarabayashic, Y., Nagamunea, T. (2004) Properties of an Alcohol Dehydrogenase from the Hyperthermophilic Archaeon Aeropyrum pernix K1. J. Biosci. Bioeng. 97: 202-206.