Synthesis of Spherical Nanostructured g-Al2O3 Particles using Cetyltrimethylammonium Bromide (CTAB) Reverse Micelle Templating

Didi Prasetyo Benu -  Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
*Veinardi Suendo -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Rino Rakhmata Mukti -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Erna Febriyanti -  Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Fry Voni Steky -  Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Damar Rastri Adhika -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No 10, Bandung 40132, Indonesia
Viny Veronika Tanuwijaya -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No 10, Bandung 40132, Indonesia
Ashari Budi Nugraha -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No 10, Bandung 40132, Indonesia
Received: 7 Dec 2018; Revised: 8 May 2019; Accepted: 20 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 194 78
Abstract

We demonstrated the synthesis of spherical nanostructured g-Al2O3 using reverse micelle templating to enhance the surface area and reactant accessibility. Three different surfactants were used in this study: benzalkonium chloride (BZK), sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). We obtained spherical nanostructured particles only using CTAB that form a reverse micelle emulsion. The particles have wide size distribution with an average size of 2.54 mm. The spherical particles consist of nanoplate crystallites with size 20-40 nm randomly arranged forming intercrystallite spaces. The crystalline phase of as-synthesized and calcined particles was boehmite and g-Al2O3, respectively as determined by XRD analysis. Here, the preserved particle morphology during boehmite to g-Al2O3 transformation opens a facile route to synthesize g-Al2O3 particles with complex morphology. The specific surface area of synthesized particles is 201 m2/g, which is around five times higher than the conventional g-Al2O3 (Aldrich 544833). Spherical nanostructured g-Al2O3 provides wide potential applications in catalysis due to its high density closed packed structure, large surface area, and high accessibility. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Boehmite; CTAB; reverse micelle; spherical nanostructured particle; g-Al2O3

Article Metrics:

  1. Manton, M.R.S., Davidtz, J.C. (1997). Controlled pore sizes and active site spacings determining selectivity in amorphous silica-alumina catalysts. Journal of Catalysis, 60: 156-166.
  2. Schiffino, R.S., Merrill, R.P. (1993). A mechanistic study of the methanol dehydration reaction on g-alumina catalyst. J. Phys. Chem., 97: 6425-6435.
  3. Trueba, M., Trasatti, S.P. (2005). g-alumina as a support for catalysts: a review for fundamental aspects. Eur. J. Inorg. Chem., 2005(17): 3393–3403.
  4. Eliassi, A., Ranjbar, M. (2014). Application of novel gamma alumina nanostructure for preparation of dimethyl ether from methanol. Int. J. Nanosci. Nanotechnol., 10: 13-26.
  5. Ghosh, U., Kulkarni, K., Kulkarni, A.D., Chaudhari, P.L. (2015). Review-hydrocracking using different catalysts. Chemical and Process Engineering Research, 34: 51-55.
  6. McHale, J.M., Auroux, A., Perrotta, A.J., Navrotsky, A. (1997). Surface
  7. energies and thermodynamic phase stability in nanocrystalline aluminas. Science, 277: 788−791.
  8. Fionov, A.V. (2002). Lewis acid properties of alumina-based catalyst: study by paramagnetic complexes of probe molecules. Surface Science, 507-510: 74-81.
  9. Feng, R., Liu, S., Bai, P., Qiao, K., Wang, Y., Al-Megren, H., Rood, M.J., Yang, Z. (2014). Preparation and characterization of g‑Al2O3 with rich Brønsted acid Sites and its application in the fluid catalytic cracking process. J. Phys. Chem. C, 118: 6226−6234.
  10. Wu, Q., Zhang, F., Yang, J., Li, Q., Tu, B., Zhao, D. (2011): Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure, Microporous, and Mesoporous Materials. 143: 406–412.
  11. Zhong, L., Zhang, Y., Zhang, Y. (2011). Cleaner synthesis of mesoporous alumina from sodium aluminate solution. Green Chem., 13: 2525-2530.
  12. Khazaei, A., Nazari, S., Karimi, G., Ghaderi, E., Moradian, K.M., Bagherpor, Z., Nazari, S. (2016). Synthesis and characterization of g-alumina porous nanoparticle from sodium aluminate liquor with two different surfactants. Int. J. Nanosci. Nantechnol, 12: 207-214.
  13. Huang, B., Bartholomew, C.H., Woodfield, B.F. (2014). Facile synthesis of mesoporous c-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides. Microporous and Mesoporous Materials, 183: 37–47.
  14. Wu, W., Wan, Z., Zhu, M., Zhang, D. (2016). A facile route to aqueous phase synthesis of mesoporous alumina with controllable structural properties. Microporous and Mesoporous Materials, 223: 203-212.
  15. Keshavarz, A.R., Rezaei, M., Yaripour, F. (2010). Nanocrystalline gamma-alumina: A highly active catalyst for dimethyl ether synthesis. Powder Technology, 199: 176–179.
  16. Krokidis, X., Raybaud, P., Gobichon, A., Rebours, B., Euzen, P., Toulhoat, H. (2001). Theoretical study of the dehydration process of boehmite to g-alumina, J. Phys. Chem. B, 105: 5121-5130.
  17. Paglia, G., Buckley, C.E., Rohl, A.L., Hart, R.D., Winter, K., Studer, A.J., Hunter, B.A., Hanna, J.V. (2004). Boehmite derived g-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, g’-Alumina. Chem. Mater., 16: 220-236.
  18. Alphonse, P., Courty, M. (2005). Structure and thermal behavior of nanocrystalline boehmite. Thermochimica Acta, 425: 75–89.
  19. Boumaza, A., Djelloul, A., Guerrab, F. (2010). Specific signatures of α-alumina powders prepared by calcination of boehmite or gibbsite, Powder Technology, 201: 177–180.
  20. Alex, T.C. (2014). An insight into the changes in the thermal analysis curves of boehmite with mechanical activation, J. Therm. Anal. Calorim., 117: 163–171.
  21. Li, G., Liu, Y., Liu, D., Liu, L., Liu, C. (2010). Synthesis of flower-like boehmite (AlOOH) via a simple solvothermal process without surfactant, Materials Research Bulletin, 45: 1487–1491.
  22. Tang, Z., Liang, J., Li, X., Li, J., Guo, H., Liu, Y., Liu, C. (2013). Synthesis of flower-like boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route, Journal of Solid-State Chemistry, 202: 305–314.
  23. Wang, Z., Du, H., Gong, J., Yang, S., Ma, J., Xu, J. (2014). Facile synthesis of hierarchical flower-like g-AlOOH films via hydrothermal route on quartz surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450: 76-82.
  24. Febriyanti, E., Suendo, V., Mukti, R.R., Prasetyo, A., Akbar, M.A., Triwahyono, S., Marsih, I.M., Ismunandar, I. (2016). Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1, Langmuir, 32: 5802-5811.
  25. Schneider, C.A., Rasband, W.S.,Eliceiri, K.W. (2012): NIH Image to ImageJ: 25 years of image analysis, Nature methods, 9(7): 671-675.
  26. Davies, J.T. (1957). A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent, Proceedings of 2nd International Congress Surface Activity, London, 426-438.
  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87 (9–10): 1-19.
  28. Gould, T.D., Izar, A., Weimer, A.W., Falconer, J.L., Medlin, J.W. (2014). Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions. ACS Catalysis, 4 (8): 2714–2717.
  29. Gould, T.D., Lubers, A.M., Corpuz, A.R., Weimer, A.W., Falconer, J.L., Medlin, J.W. (2015). Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catalysis, 5 (2): 1344–1352.
  30. M’rad, I., Jeljeli, M., Rihane, N., Hilber, P., Sakly, M., Amara, S. (2018). Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI Journal, 17: 200-210.