skip to main content

Synthesis of Spherical Nanostructured g-Al2O3 Particles using Cetyltrimethylammonium Bromide (CTAB) Reverse Micelle Templating

1Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

2Department of Chemistry, Universitas Timor, Jl. Eltari, Kefamenanu 85613, Indonesia

3Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

Received: 7 Dec 2018; Revised: 8 May 2019; Accepted: 20 May 2019; Available online: 30 Sep 2019; Published: 1 Dec 2019.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

We demonstrated the synthesis of spherical nanostructured g-Al2O3 using reverse micelle templating to enhance the surface area and reactant accessibility. Three different surfactants were used in this study: benzalkonium chloride (BZK), sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). We obtained spherical nanostructured particles only using CTAB that form a reverse micelle emulsion. The particles have wide size distribution with an average size of 2.54 mm. The spherical particles consist of nanoplate crystallites with size 20-40 nm randomly arranged forming intercrystallite spaces. The crystalline phase of as-synthesized and calcined particles was boehmite and g-Al2O3, respectively as determined by XRD analysis. Here, the preserved particle morphology during boehmite to g-Al2O3 transformation opens a facile route to synthesize g-Al2O3 particles with complex morphology. The specific surface area of synthesized particles is 201 m2/g, which is around five times higher than the conventional g-Al2O3 (Aldrich 544833). Spherical nanostructured g-Al2O3 provides wide potential applications in catalysis due to its high density closed packed structure, large surface area, and high accessibility. 

Fulltext View|Download
Keywords: Boehmite; CTAB; reverse micelle; spherical nanostructured particle; g-Al2O3
Funding: Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)

Article Metrics:

  1. Manton, M.R.S., Davidtz, J.C. (1997). Controlled pore sizes and active site spacings determining selectivity in amorphous silica-alumina catalysts. Journal of Catalysis, 60: 156-166
  2. Schiffino, R.S., Merrill, R.P. (1993). A mechanistic study of the methanol dehydration reaction on g-alumina catalyst. J. Phys. Chem., 97: 6425-6435
  3. Trueba, M., Trasatti, S.P. (2005). g-alumina as a support for catalysts: a review for fundamental aspects. Eur. J. Inorg. Chem., 2005(17): 3393–3403
  4. Eliassi, A., Ranjbar, M. (2014). Application of novel gamma alumina nanostructure for preparation of dimethyl ether from methanol. Int. J. Nanosci. Nanotechnol., 10: 13-26
  5. Ghosh, U., Kulkarni, K., Kulkarni, A.D., Chaudhari, P.L. (2015). Review-hydrocracking using different catalysts. Chemical and Process Engineering Research, 34: 51-55
  6. McHale, J.M., Auroux, A., Perrotta, A.J., Navrotsky, A. (1997). Surface
  7. energies and thermodynamic phase stability in nanocrystalline aluminas. Science, 277: 788−791
  8. Fionov, A.V. (2002). Lewis acid properties of alumina-based catalyst: study by paramagnetic complexes of probe molecules. Surface Science, 507-510: 74-81
  9. Feng, R., Liu, S., Bai, P., Qiao, K., Wang, Y., Al-Megren, H., Rood, M.J., Yang, Z. (2014). Preparation and characterization of g‑Al2O3 with rich Brønsted acid Sites and its application in the fluid catalytic cracking process. J. Phys. Chem. C, 118: 6226−6234
  10. Wu, Q., Zhang, F., Yang, J., Li, Q., Tu, B., Zhao, D. (2011): Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure, Microporous, and Mesoporous Materials. 143: 406–412
  11. Zhong, L., Zhang, Y., Zhang, Y. (2011). Cleaner synthesis of mesoporous alumina from sodium aluminate solution. Green Chem., 13: 2525-2530
  12. Khazaei, A., Nazari, S., Karimi, G., Ghaderi, E., Moradian, K.M., Bagherpor, Z., Nazari, S. (2016). Synthesis and characterization of g-alumina porous nanoparticle from sodium aluminate liquor with two different surfactants. Int. J. Nanosci. Nantechnol, 12: 207-214
  13. Huang, B., Bartholomew, C.H., Woodfield, B.F. (2014). Facile synthesis of mesoporous c-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides. Microporous and Mesoporous Materials, 183: 37–47
  14. Wu, W., Wan, Z., Zhu, M., Zhang, D. (2016). A facile route to aqueous phase synthesis of mesoporous alumina with controllable structural properties. Microporous and Mesoporous Materials, 223: 203-212
  15. Keshavarz, A.R., Rezaei, M., Yaripour, F. (2010). Nanocrystalline gamma-alumina: A highly active catalyst for dimethyl ether synthesis. Powder Technology, 199: 176–179
  16. Krokidis, X., Raybaud, P., Gobichon, A., Rebours, B., Euzen, P., Toulhoat, H. (2001). Theoretical study of the dehydration process of boehmite to g-alumina, J. Phys. Chem. B, 105: 5121-5130
  17. Paglia, G., Buckley, C.E., Rohl, A.L., Hart, R.D., Winter, K., Studer, A.J., Hunter, B.A., Hanna, J.V. (2004). Boehmite derived g-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, g’-Alumina. Chem. Mater., 16: 220-236
  18. Alphonse, P., Courty, M. (2005). Structure and thermal behavior of nanocrystalline boehmite. Thermochimica Acta, 425: 75–89
  19. Boumaza, A., Djelloul, A., Guerrab, F. (2010). Specific signatures of α-alumina powders prepared by calcination of boehmite or gibbsite, Powder Technology, 201: 177–180
  20. Alex, T.C. (2014). An insight into the changes in the thermal analysis curves of boehmite with mechanical activation, J. Therm. Anal. Calorim., 117: 163–171
  21. Li, G., Liu, Y., Liu, D., Liu, L., Liu, C. (2010). Synthesis of flower-like boehmite (AlOOH) via a simple solvothermal process without surfactant, Materials Research Bulletin, 45: 1487–1491
  22. Tang, Z., Liang, J., Li, X., Li, J., Guo, H., Liu, Y., Liu, C. (2013). Synthesis of flower-like boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route, Journal of Solid-State Chemistry, 202: 305–314
  23. Wang, Z., Du, H., Gong, J., Yang, S., Ma, J., Xu, J. (2014). Facile synthesis of hierarchical flower-like g-AlOOH films via hydrothermal route on quartz surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450: 76-82
  24. Febriyanti, E., Suendo, V., Mukti, R.R., Prasetyo, A., Akbar, M.A., Triwahyono, S., Marsih, I.M., Ismunandar, I. (2016). Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1, Langmuir, 32: 5802-5811
  25. Schneider, C.A., Rasband, W.S.,Eliceiri, K.W. (2012): NIH Image to ImageJ: 25 years of image analysis, Nature methods, 9(7): 671-675
  26. Davies, J.T. (1957). A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent, Proceedings of 2nd International Congress Surface Activity, London, 426-438
  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87 (9–10): 1-19
  28. Gould, T.D., Izar, A., Weimer, A.W., Falconer, J.L., Medlin, J.W. (2014). Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions. ACS Catalysis, 4 (8): 2714–2717
  29. Gould, T.D., Lubers, A.M., Corpuz, A.R., Weimer, A.W., Falconer, J.L., Medlin, J.W. (2015). Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catalysis, 5 (2): 1344–1352
  30. M’rad, I., Jeljeli, M., Rihane, N., Hilber, P., Sakly, M., Amara, S. (2018). Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI Journal, 17: 200-210

Last update:

No citation recorded.

Last update:

No citation recorded.