1Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
2Department of Chemistry, Universitas Timor, Jl. Eltari, Kefamenanu 85613, Indonesia
3Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
BibTex Citation Data :
@article{BCREC3855, author = {Didi Benu and Veinardi Suendo and Rino Mukti and Erna Febriyanti and Fry Steky and Damar Adhika and Viny Tanuwijaya and Ashari Nugraha}, title = {Synthesis of Spherical Nanostructured g-Al2O3 Particles using Cetyltrimethylammonium Bromide (CTAB) Reverse Micelle Templating}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {14}, number = {3}, year = {2019}, keywords = {Boehmite; CTAB; reverse micelle; spherical nanostructured particle; g-Al2O3}, abstract = { We demonstrated the synthesis of spherical nanostructured g-Al 2 O 3 using reverse micelle templating to enhance the surface area and reactant accessibility. Three different surfactants were used in this study: benzalkonium chloride (BZK), sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). We obtained spherical nanostructured particles only using CTAB that form a reverse micelle emulsion. The particles have wide size distribution with an average size of 2.54 mm. The spherical particles consist of nanoplate crystallites with size 20-40 nm randomly arranged forming intercrystallite spaces. The crystalline phase of as-synthesized and calcined particles was boehmite and g-Al 2 O 3, respectively as determined by XRD analysis. Here, the preserved particle morphology during boehmite to g-Al 2 O 3 transformation opens a facile route to synthesize g-Al 2 O 3 particles with complex morphology. The specific surface area of synthesized particles is 201 m 2 /g, which is around five times higher than the conventional g-Al 2 O 3 (Aldrich 544833). Spherical nanostructured g-Al 2 O 3 provides wide potential applications in catalysis due to its high density closed packed structure, large surface area, and high accessibility. }, issn = {1978-2993}, pages = {542--550} doi = {10.9767/bcrec.14.3.3855.542-550}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/3855} }
Refworks Citation Data :
We demonstrated the synthesis of spherical nanostructured g-Al2O3 using reverse micelle templating to enhance the surface area and reactant accessibility. Three different surfactants were used in this study: benzalkonium chloride (BZK), sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). We obtained spherical nanostructured particles only using CTAB that form a reverse micelle emulsion. The particles have wide size distribution with an average size of 2.54 mm. The spherical particles consist of nanoplate crystallites with size 20-40 nm randomly arranged forming intercrystallite spaces. The crystalline phase of as-synthesized and calcined particles was boehmite and g-Al2O3, respectively as determined by XRD analysis. Here, the preserved particle morphology during boehmite to g-Al2O3 transformation opens a facile route to synthesize g-Al2O3 particles with complex morphology. The specific surface area of synthesized particles is 201 m2/g, which is around five times higher than the conventional g-Al2O3 (Aldrich 544833). Spherical nanostructured g-Al2O3 provides wide potential applications in catalysis due to its high density closed packed structure, large surface area, and high accessibility.
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)