skip to main content

bcl Morphology Formation Strategy on Nanostructured Titania via Alkaline Hydrothermal Treatment

1Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

2Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Indonesia

3Department of Chemistry, Universitas Timor, Jl. Eltari, Kefamenanu 85613, Indonesia

Received: 7 Dec 2018; Revised: 27 Mar 2019; Accepted: 10 Apr 2019; Available online: 30 Sep 2019; Published: 1 Dec 2019.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Titanium dioxide (TiO2) is a semiconductor material that plays an important role in photocatalysis. Bicontinuous concentric lamellar (bcl) is an interesting morphology with an open channel pore structure that has been successfully synthesized on silica-based materials. If bcl morphology can be applied in TiO2 system, then many surface properties of TiO2 can be enhanced, i.e. photocatalytic activity. A simple and effective strategy has been demonstrated to transform aggregated and spherical TiO2 particles to bcl morphology via alkaline hydrothermal route. Alkaline hydrothermal treatment successfully transforms TiO2 particle surface to have bcl morphology through swelling with ammonia then followed by phase segregation process. We proposed this strategy as a general pathway to transform the particle surface with any shape to have bcl morphology. 

Fulltext View|Download
Keywords: Alkaline hydrothermal treatment; bcl morphology; lamellar morphology; modified morphology, nanostructured TiO2
Funding: ITB Research Grant 2018

Article Metrics:

  1. Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C. (2014). Characteristics and Properties of a Novel In Situ Method of Synthesizing Mesoporous TiO2 Nanopowders by a Simple Coprecipitation Process without Adding Surfactant. Journal of Alloys and Compounds, 613: 107–116
  2. Liu, G., Liu, L., Song, J., Liang, J., Luo, Q., Wang, D. (2014). Visible Light Photocatalytic Activity of TiO2 Nanoparticles Hybridized by Conjugated Derivative of Polybutadiene. Superlattices and Microstructures, 69: 164–174
  3. Latini, A., Cavallo, C., Aldibaja, F.K., Gozzi, D. (2013). Efficiency Improvement of DSSC Photoanode by Scandium Doping of Mesoporous Titania Beads. J. Phys. Chem. C, 117: 25276−25289
  4. Hao, C., Lv, H., Mi, C., Song, Y., Ma, J. (2016). Investigation of Mesoporous Niobium-Doped TiO2 as an Oxygen Evolution Catalyst Support in an SPE Water Electrolyzer. ACS Sustainable Chem. Eng., 4: 746–756
  5. Jitputti, J., Rattanavoravipa, T., Chuangchote, S., Pavasupree, S., Suzuki, Y., Yoshikawa, S., Qiu, J. (2009). Fabrication of Size-Controllable Flower-Like TiO2 and Its Photocatalytic Activity. Journal of the American Ceramic Society, 16: 3–9
  6. Chen, X., Mao, S.S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107: 2891-2959
  7. Lee, J., Orilall, M.C., Warren, S.C., Kamperman, M., DiSalvo, F.J., Wiesner, U. (2008). Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores. Nat. Mater, 7: 222-228
  8. Zhou, H.S., Li, D.L., Hibino, M., Honma, I. (2005). A Self-Ordered, Crystalline-Glass, Mesoporous Nanocomposite for Use as A Lithium-Based Storage Device with Both High Power and High Energy Densities. Angew. Chem. Int. Ed, 44: 797-802
  9. Alivov, Y., Fan, Z.Y. (2009). A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage. J. Phys. Chem. C., 113: 12954–12957
  10. Nowotny, J., Bak, T., Nowotny, M.K., Sheppard, L.R. (2006). TiO2 Surface Active Sites for Water Splitting. J. Phys. Chem. B, 110: 18492-18495
  11. Bayal, N., Singh, R., Polshettiwar, V. (2017). Nanostructured Silica-Titania Hybrid using Fibrous Nanosilica as Photocatalysts. ChemSusChem, 10: 2182-2191
  12. Dhiman, M., Chalke, B., Polshettiwar, V. (2015). Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (KCC-1) for Catalysis. ACS Sustainable Chem. Eng., 3: 3224−3230
  13. Febriyanti, E., Suendo, V., Mukti, R.R., Prasetyo, A., Arifin, A.F., Akbar, M.A., Marsih, I.N. (2016). Further Insight on the Definite Morphology and Formation Mechanism of Mesoporous Silica KCC-1. Langmuir, 32: 5802-5811
  14. Inaba, R., Fukahori, T., Hamamoto, M., & Ohno, T. (2006). Synthesis of Nanosized TiO2 Particles in Reverse Micelle Systems and Their Photocatalytic Activity for Degradation of Toluene in Gas Phase. Journal of Molecular Catalysis A: Chemical, 260: 247–254
  15. Fernández-García, M., Wang, X., Belver, C., Hanson, J.C., Rodriguez, J.A. (2007). Anatase-TiO2 Nanomaterials: Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. The Journal of Physical Chemistry C, 111(2): 674–682
  16. Liu, X-Y., Coville, N.J. (2005). A Raman Study of Titanate Nanotubes. S. Afr. J. Chem., 58: 110–115
  17. Ohsaka, T., Izumi, F., Fujiki, Y. (1978). Raman Spectrum of Anatase, TiO2. Journal of Raman Spectroscopy, 7(6): 321–324
  18. Frank, O., Zukalova, M., Laskova, B., Kurti, J., Koltai, J., Kavan, L. (2012). Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys., 14: 14567–14572
  19. Li, Y., Qin, Z., Guo, H., Yang, H., Zhang, G., Ji, S., Zeng, T. (2014). Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity. PLoS ONE, 9(12): e114638
  20. Spada, E.R., Pereira, E.A., Montanhera, M.A., Morais, L.H., Freitas, R.G., Costa, R.G.F., Soares, G.B., Ribeiro, C., de Paula, F.R. (2017). Preparation, Characterization and Application of Phase-Pure Anatase and Rutile TiO2 Nanoparticles by New Green Route. Journal of Materials Science: Materials in Electronics, 28(22): 16932–16938
  21. Li, Z., Zhu, Y., Wang, J., Guo, Q., Li, J. (2015). Size-Controlled Synthesis of Dispersed Equiaxed Amorphous TiO2 Nanoparticles. Ceramics International, 41(7): 9057–9062
  22. Rezaee, M., Khoie, S.M.M., Liu, K.H. (2011). The Role of Brookite in Mechanical Activation of Anatase-to-Rutile Transformation of Nanocrystalline TiO2: An XRD and Raman Spectroscopy Investigation. CrystEngComm, 13: 5055–5061
  23. Howard, C.J., Sabine, T.M., Dickson, F. (1991). Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica, Section B, 47: 462–468
  24. Memesa, M., Lenz, S., Emmerling, S.G.J., Nett, S., Perlich, J., Müller-Buschbaum, P., Gutmann, J.S. (2011). Morphology and Photoluminescence Study of Titania Nanoparticles. Colloid and Polymer Science, 289(8): 943–953
  25. Nakajima, H., Mori, T., Watanabe, M. (2004). Relationship between Photoluminescence Intensity of TiO2 Suspension Containing Ethanol and Its Surface Coverage on TiO2 Surface. Japanese Journal of Applied Physics, 43(6A): 3609–3610
  26. Zhu, Y.C., Ding, C.X. (1999). Investigation on the Surface State of TiO2 Ultrafine Particles by Luminescence. Journal of Solid State Chemistry, 145(2): 711–715
  27. Liu, B., Wen, L., Zhao, X. (2007). The Photoluminescence Spectroscopic Study of Anatase TiO2 Prepared by Magnetron Sputtering. Materials Chemistry and Physics, 106(2-3): 350–353
  28. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisoption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10):1–19
  29. Evonik Resource Efficiency GmbH. (2018, January). AEROXIDE® TiO2 P25: Hydrophilic Fumed Titanium Dioxide. Product Information. Available at https://products-re.evonik.com/www2/uploads/productfinder/AEROXIDE-TiO2-P-25-EN.pdf (Retrieved March 26, 2019); p. 1
  30. Schmidt, C. M., Weitz, E., Geiger, F. M. (2006). Interaction of the Indoor Air Pollutant Acetone with Degussa P25 TiO2 Studied by Chemical Ionization Mass Spectrometry. Langmuir, 22(23): 9642–9650
  31. Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P. (2011). Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Research Letters, 6: 27–35

Last update:

No citation recorded.

Last update:

No citation recorded.