bcl Morphology Formation Strategy on Nanostructured Titania via Alkaline Hydrothermal Treatment

Fry Voni Steky -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
*Veinardi Suendo -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Rino Rakhmata Mukti -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Didi Prasetyo Benu -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Muhammad Reza -  Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Damar Rastri Adhika -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No 10, Bandung 40132, Indonesia
Viny Veronika Tanuwijaya -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No 10, Bandung 40132, Indonesia
Ashari Budi Nugraha -  Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
Received: 7 Dec 2018; Revised: 27 Mar 2019; Accepted: 10 Apr 2019; Published: 1 Dec 2019; Available online: 29 Jul 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: ENGLISH
Full Text:
Statistics: 123 34
Abstract

Titanium dioxide (TiO2) is a semiconductor material that plays an important role in photocatalysis. Bicontinuous concentric lamellar (bcl) is an interesting morphology with an open channel pore structure that has been successfully synthesized on silica-based materials. If bcl morphology can be applied in TiO2 system, then many surface properties of TiO2 can be enhanced, i.e. photocatalytic activity. A simple and effective strategy has been demonstrated to transform aggregated and spherical TiO2 particles to bcl morphology via alkaline hydrothermal route. Alkaline hydrothermal treatment successfully transforms TiO2 particle surface to have bcl morphology through swelling with ammonia then followed by phase segregation process. We proposed this strategy as a general pathway to transform the particle surface with any shape to have bcl morphology. Copyright © 2019 BCREC Group. All rights reserved 

Keywords
Alkaline hydrothermal treatment; bcl morphology; lamellar morphology; modified morphology, nanostructured TiO2

Article Metrics:

  1. Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C. (2014). Characteristics and Properties of a Novel In Situ Method of Synthesizing Mesoporous TiO2 Nanopowders by a Simple Coprecipitation Process without Adding Surfactant. Journal of Alloys and Compounds, 613: 107–116.
  2. Liu, G., Liu, L., Song, J., Liang, J., Luo, Q., Wang, D. (2014). Visible Light Photocatalytic Activity of TiO2 Nanoparticles Hybridized by Conjugated Derivative of Polybutadiene. Superlattices and Microstructures, 69: 164–174.
  3. Latini, A., Cavallo, C., Aldibaja, F.K., Gozzi, D. (2013). Efficiency Improvement of DSSC Photoanode by Scandium Doping of Mesoporous Titania Beads. J. Phys. Chem. C, 117: 25276−25289.
  4. Hao, C., Lv, H., Mi, C., Song, Y., Ma, J. (2016). Investigation of Mesoporous Niobium-Doped TiO2 as an Oxygen Evolution Catalyst Support in an SPE Water Electrolyzer. ACS Sustainable Chem. Eng., 4: 746–756.
  5. Jitputti, J., Rattanavoravipa, T., Chuangchote, S., Pavasupree, S., Suzuki, Y., Yoshikawa, S., Qiu, J. (2009). Fabrication of Size-Controllable Flower-Like TiO2 and Its Photocatalytic Activity. Journal of the American Ceramic Society, 16: 3–9.
  6. Chen, X., Mao, S.S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107: 2891-2959.
  7. Lee, J., Orilall, M.C., Warren, S.C., Kamperman, M., DiSalvo, F.J., Wiesner, U. (2008). Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores. Nat. Mater, 7: 222-228.
  8. Zhou, H.S., Li, D.L., Hibino, M., Honma, I. (2005). A Self-Ordered, Crystalline-Glass, Mesoporous Nanocomposite for Use as A Lithium-Based Storage Device with Both High Power and High Energy Densities. Angew. Chem. Int. Ed, 44: 797-802.
  9. Alivov, Y., Fan, Z.Y. (2009). A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage. J. Phys. Chem. C., 113: 12954–12957.
  10. Nowotny, J., Bak, T., Nowotny, M.K., Sheppard, L.R. (2006). TiO2 Surface Active Sites for Water Splitting. J. Phys. Chem. B, 110: 18492-18495
  11. Bayal, N., Singh, R., Polshettiwar, V. (2017). Nanostructured Silica-Titania Hybrid using Fibrous Nanosilica as Photocatalysts. ChemSusChem, 10: 2182-2191.
  12. Dhiman, M., Chalke, B., Polshettiwar, V. (2015). Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (KCC-1) for Catalysis. ACS Sustainable Chem. Eng., 3: 3224−3230
  13. Febriyanti, E., Suendo, V., Mukti, R.R., Prasetyo, A., Arifin, A.F., Akbar, M.A., Marsih, I.N. (2016). Further Insight on the Definite Morphology and Formation Mechanism of Mesoporous Silica KCC-1. Langmuir, 32: 5802-5811.
  14. Inaba, R., Fukahori, T., Hamamoto, M., & Ohno, T. (2006). Synthesis of Nanosized TiO2 Particles in Reverse Micelle Systems and Their Photocatalytic Activity for Degradation of Toluene in Gas Phase. Journal of Molecular Catalysis A: Chemical, 260: 247–254.
  15. Fernández-García, M., Wang, X., Belver, C., Hanson, J.C., Rodriguez, J.A. (2007). Anatase-TiO2 Nanomaterials: Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. The Journal of Physical Chemistry C, 111(2): 674–682.
  16. Liu, X-Y., Coville, N.J. (2005). A Raman Study of Titanate Nanotubes. S. Afr. J. Chem., 58: 110–115.
  17. Ohsaka, T., Izumi, F., Fujiki, Y. (1978). Raman Spectrum of Anatase, TiO2. Journal of Raman Spectroscopy, 7(6): 321–324.
  18. Frank, O., Zukalova, M., Laskova, B., Kurti, J., Koltai, J., Kavan, L. (2012). Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys., 14: 14567–14572.
  19. Li, Y., Qin, Z., Guo, H., Yang, H., Zhang, G., Ji, S., Zeng, T. (2014). Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity. PLoS ONE, 9(12): e114638.
  20. Spada, E.R., Pereira, E.A., Montanhera, M.A., Morais, L.H., Freitas, R.G., Costa, R.G.F., Soares, G.B., Ribeiro, C., de Paula, F.R. (2017). Preparation, Characterization and Application of Phase-Pure Anatase and Rutile TiO2 Nanoparticles by New Green Route. Journal of Materials Science: Materials in Electronics, 28(22): 16932–16938.
  21. Li, Z., Zhu, Y., Wang, J., Guo, Q., Li, J. (2015). Size-Controlled Synthesis of Dispersed Equiaxed Amorphous TiO2 Nanoparticles. Ceramics International, 41(7): 9057–9062.
  22. Rezaee, M., Khoie, S.M.M., Liu, K.H. (2011). The Role of Brookite in Mechanical Activation of Anatase-to-Rutile Transformation of Nanocrystalline TiO2: An XRD and Raman Spectroscopy Investigation. CrystEngComm, 13: 5055–5061.
  23. Howard, C.J., Sabine, T.M., Dickson, F. (1991). Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica, Section B, 47: 462–468.
  24. Memesa, M., Lenz, S., Emmerling, S.G.J., Nett, S., Perlich, J., Müller-Buschbaum, P., Gutmann, J.S. (2011). Morphology and Photoluminescence Study of Titania Nanoparticles. Colloid and Polymer Science, 289(8): 943–953.
  25. Nakajima, H., Mori, T., Watanabe, M. (2004). Relationship between Photoluminescence Intensity of TiO2 Suspension Containing Ethanol and Its Surface Coverage on TiO2 Surface. Japanese Journal of Applied Physics, 43(6A): 3609–3610.
  26. Zhu, Y.C., Ding, C.X. (1999). Investigation on the Surface State of TiO2 Ultrafine Particles by Luminescence. Journal of Solid State Chemistry, 145(2): 711–715.
  27. Liu, B., Wen, L., Zhao, X. (2007). The Photoluminescence Spectroscopic Study of Anatase TiO2 Prepared by Magnetron Sputtering. Materials Chemistry and Physics, 106(2-3): 350–353.
  28. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisoption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10):1–19.
  29. Evonik Resource Efficiency GmbH. (2018, January). AEROXIDE® TiO2 P25: Hydrophilic Fumed Titanium Dioxide. Product Information. Available at https://products-re.evonik.com/www2/uploads/productfinder/AEROXIDE-TiO2-P-25-EN.pdf (Retrieved March 26, 2019); p. 1.
  30. Schmidt, C. M., Weitz, E., Geiger, F. M. (2006). Interaction of the Indoor Air Pollutant Acetone with Degussa P25 TiO2 Studied by Chemical Ionization Mass Spectrometry. Langmuir, 22(23): 9642–9650.
  31. Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P. (2011). Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Research Letters, 6: 27–35