A Performance Study of Home-Made Co-Immobilized Lipase from Mucor miehei in Polyurethane Foam on The Hydrolysis of Coconut Oil to Fatty Acid

Dwina Moentamaria -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Maktum Muharja -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Tri Widjaja -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
*Arief Widjaja -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Received: 7 Dec 2018; Revised: 11 Feb 2019; Accepted: 15 Feb 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

Bio‐based fatty acids (FAs) produced through hydrolysis of natural oils and fats are promising chemical feedstocks for increasing  the economic value of renewable raw materials. In this work, lecithin, gelatin, PEG, and MgCl2 were employed as the co-immobilized material of crude lipase Mucor miehei immobilization on the polyurethane foam (PUF) matrix for hydrolysis of coconut oil to Free Fatty Acid (FFA). The unconventional immobilized technique was used through cross-linking and covalent bond. Single factor analysis and response surface method were utilized to determine the optimum conditions of the hydrolysis reaction. After optimization, co-immobilized lipase was examined for storage stability at a temperature of 4°C and reusability performance. The optimum conditions for coconut oil hydrolysis were obtained on the co-immobilized-PUF ratio, water-oil ratio, and reaction time of 20.17 w/w, 4.45 w/w, and 20 h, respectively. Under these conditions, the acid value as lauric acid enhanced 573% to 3.21 mg KOH/g oil. Storage stability attained through remaining activity on free lipase, PUF-lipase, PUF-co-immobilized-lipase were 9.89%, 42.3%, and 91.88%, respectively. In this study, the application of PUF-co-immobilized lipase in hydrolysis reactions can be reused up to 5 times. Characteristics of the addition of co-immobilized lipase have been analyzed using Fourier Transform Infra Red (FTIR) and Scanning Electron Microscope (SEM), showing the presence of functional groups binding and the changes in the surface matrix structure. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
co-immobilized lipase; coconut oil; free fatty acid; polyurethane foam; response surface methodology

Article Metrics:

  1. Sharma, A., Chaurasia, S.P., Dalai, A.K. (2013). Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catal. Today. 207: 93-100. doi:10.1016/j.cattod.2012.05.006.
  2. Murty, V.R., Bhat, J., Muniswaran, P.K.A. (2002). Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng. 7: 57–66. doi: 10.1007/BF02935881.
  3. Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., Ashjari, M. (2015). Selective enrichment of polyunsaturated fatty acids by hydrolysis of fish oil using immobilized and stabilized Rhizomucor miehei lipase preparations. Food Bioprod. Process. 94: 414–421. doi:10.1016/j.fbp.2014.05.007.
  4. Cao, L. (2005). Carrier-bound Immobilized Enzymes: Principles, Application and Design, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1201/9783527607082.
  5. Taqieddin, E., Amiji, M. (2004). Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials. 25: 1937–1945. doi:10.1016/j.biomaterials.2003.08.034.
  6. Prastowo, I., Hidayat, C., Hastuti, P. (2015). Production of Oleic Acid Ethyl Ester catalyzed by crude rice bran (Oryza sativa) lipase in a modified fed-batch system: A problem and its solution, Bull. Chem. React. Eng. Catal. 10: 230-236. doi:10.9767/bcrec.10.3.8511.230-236.
  7. Saleem, M., Rashid, M.H., Jabbar, A., Perveen, R., Khalid, A.M., Rajoka, M.I. (2005). Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochem. 40: 849-855. doi:10.1016/j.procbio.2004.02.026.
  8. Yücel, Y. (2012). Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology, Biocatal. Agric. Biotechnol. 1: 39-44. doi:10.1016/j.bcab.2011.08.009.
  9. Li, Y., Wang, Z., Xu, X., Jin, L. (2015). A Ca-alginate particle co-immobilized with Phanerochaete chrysosporium cells and the combined cross-linked enzyme aggregates from Trametes versicolor. Bioresour. Technol. 198: 464-469. doi:10.1016/j.biortech.2015.09.032.
  10. Pires-Cabral, P., da Fonseca, M.M.R., Ferreira-Dias, S. (2009). Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: A kinetic study. Biochem. Eng. J. 43: 327-332. doi:10.1016/j.bej.2008.11.002.
  11. Hilmanto, H., Hidayat, C., Hastuti, P. (2016). Surface modification of macroporous matrix for immobilization of lipase for fructose oleic ester synthesis. Bull. Chem. React. Eng. Catal. 11: 339-345.
  12. doi:10.9767/bcrec.11.3.573.339-345.
  13. El-Ghaffar, M.A.A., Hashem, M.S. (2010). Chitosan and its amino acids condensation adducts as reactive natural polymer supports for cellulase immobilization. Carbohydr. Polym. 81: 507-516.
  14. doi:10.1016/j.carbpol.2010.02.025.
  15. Li, C., Zhang, G., Liu, N., Liu, L. (2015). Preparation and properties of Rhizopus Oryzae lipase immobilized using an adsorption-crosslinking method. Int. J. Food Prop. 19: 1776–1785.
  16. doi:10.1080/10942912.2015.1107732.
  17. Dizge, N., Keskinler, B. (2008). Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass and Bioenergy. 32: 1274–1278.
  18. doi:10.1016/j.biombioe.2008.03.005.
  19. Pires-Cabral, P., da Fonseca, M.M.R., Ferreira-Dias, S. (2010). Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate. Biochem. Eng. J. 48: 246–252.
  20. doi:10.1016/j.bej.2009.10.021.
  21. Cui, C., Tao, Y., Li, L., Chen, B., Tan, T. (2013). Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J. Mol. Catal. B Enzym. 91: 59–66. doi:10.1016/j.molcatb.2013.03.001.
  22. Akoz, E., Sayin, S., Kaplan, S., Yilmaz, M. (2015). Improvement of catalytic activity of lipase in the presence of calix[4]arene valeric acid or hydrazine derivative, Bioprocess Biosyst. Eng. 38: 595–604. doi:10.1007/s00449-014-1299-x.
  23. Cabrera-Padilla, R.Y., Melo, E.B., Pereira, M.M., Figueiredo, R.T., Fricks, A.T., Franceschi, E., Lima, Á.S., Silva, D.P., Soares, C.M.F. (2015). Use of ionic liquids as additives for the immobilization of lipase from Bacillus sp. J. Chem. Technol. Biotechnol. 90: 1308–1316. doi:10.1002/jctb.4438.
  24. Arnold, G., Schuldt, S., Schneider, Y., Friedrichs, J., Babick, F., Werner, C., Rohm, H. (2013). The impact of lecithin on rheology, sedimentation and particle interactions in oil-based dispersions. Colloids Surfaces A Physicochem. Eng. Asp. 418: 147–156. doi:10.1016/j.colsurfa.2012.11.006.
  25. Xuan, X.Y., Cheng, Y.L., Acosta, E. (2012). Lecithin-linker microemulsion gelatin gels for extended drug delivery. Pharmaceutics. 4: 104–129. doi:10.3390/pharmaceutics4010104.
  26. Wang, P., Fan, X., Cui, L., Wang, Q., Zhou, A. (2008). Decolorization of reactive dyes by laccase immobilized in alginate/gelatin blent with PEG. J. Environ. Sci. 20: 1519–1522. doi:10.1016/S1001-0742(08)62559-0.
  27. Awang, R., Ghazuli, M.R., Basri, M. (2007). Immobilization of lipase from Candida rugosa on palm-basedpolyurethane foam as a support material. American J. Biochem. Biotechnol. 3: 163–166.
  28. Yin, C., Liu, T., Tan, T. (2006). Synthesis of vitamin A esters by immobilized Candida sp. lipase in organic media. Chinese J. Chem. Eng. 14: 81–86. doi:10.1016/S1004-9541(06)60041-4.
  29. Abbas, H., Comeau, L. (2003). Aroma synthesis by immobilized lipase from Mucor sp. Enzyme Microb. Technol. 32: 589–595. doi:10.1016/S0141-0229(03)00022-X.
  30. Ferraz, L.I.R., Possebom, G., Alvez, E.V., Cansian, R.L., Paroul, N., de Oliveira, D., Treichel, H. (2015). Application of home-made lipase in the production of geranyl propionate by esterification of geraniol and propionic acid in solvent-free system. Biocatal. Agric. Biotechnol. 4: 44–48.
  31. doi:10.1016/j.bcab.2014.07.003.
  32. Lopes, D.B., Fraga, L.P., Fleuri, L.F., Macedo, G.A. (2011). Lipase and Esterase- to What Extent Can This Classification be Applied Accurately? Food Sci. Technol. 31(3): 608-613 (doi: 10.1590/S0101-20612011000300009 )
  33. Yadav, G.D., Pawar, S.V. (2012). Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresour. Technol. 109: 1–6.
  34. doi:10.1016/j.biortech.2012.01.030.
  35. Badgujar, K.C., Bhanage, B.M. (2014). Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: Kinetic modelling study. Enzyme Microb. Technol. 57:16–25.
  36. doi:10.1016/j.enzmictec.2014.01.006.
  37. Hung, T.C., Giridhar, R., Chiou, S.H., Wu, W.T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B Enzym. 26: 69–78. doi:10.1016/S1381-1177(03)00167-X.
  38. Khaskheli, A.A., Talpur, F.N., Ashraf, M.A., Cebeci, A., Jawaid, S., Afridi, H.I. (2015). Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. J. Mol. Catal. B Enzym. 113: 56–61. doi:10.1016/j.molcatb.2015.01.002.
  39. Chowdhury, A., Mitra, D., Biswas, D. (2013). Biolubricant synthesis from waste cooking oil via enzymatic hydrolysis followed by chemical esterification. J. Chem. Technol. Biotechnol. 88: 139–144. doi:10.1002/jctb.3874.
  40. Xue, J., Zhong, Q. (2014). Blending lecithin and gelatin improves the formation of thymol nanodispersions. J. Agric. Food Chem. 62: 2956–2962. doi:10.1021/jf405828s.
  41. Guncheva, M., Tashev, E., Zhiryakova, D., Tosheva, T., Tzokova, N. (2011). Immobilization of lipase from Candida rugosa on novel phosphorous- containing polyurethanes: Application in wax ester synthesis. Process Biochem. 46:923–930.
  42. doi:10.1016/j.procbio.2011.01.002.
  43. Xu, L., Sheybani, N., Ren, S., Bowlin, G.L., Yeudall, W.A., Yang, H. (2015). Semi-interpenetrating network (Sipn) co-electrospun gelatin/insulin fiber formulation for transbuccal insulin delivery. Pharm. Res. 32: 275–285. doi:10.1007/s11095-014-1461-9.
  44. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L., Thornton, J.M. (2008). Metal ions in biological catalysis: From enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 1205–1218. doi:10.1007/s00775-008-0404-5.
  45. Cowan, J.A. (1998). Metal Activation of Enzymes in Nucleic Acid Biochemistry. Chem. Rev. 98: 1067–1088. doi:10.1021/cr960436q.
  46. Patel, V., Gajera, H., Gupta, A., Manocha, L., Madamwar, D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 95: 62–70. doi:10.1016/j.bej.2014.12.007.
  47. Garlapati, V.K., Banerjee, R. (2013). Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Res. 2013. doi:10.1155/2013/367410.
  48. Kumar, P., Krishna, A.G. (2015). Physicochemical characteristics of commercial coconut oils produced in India. Grasas Aceites. 66(1): e062. doi:10.3989/gya.0228141.
  49. Shahrom, K.B.M.S.R., Tao, L.C., Yuhana, N., Norzali, N.R.A., Sien, W.C. (2010). FTIR Spectroscopy analysis of the prepolymerization of palm-based polyurethane. Solid State Sci. Technol. 18: 1–8.
  50. doi:10.1002/humu.21631.
  51. Jamwal, S., Dharela, R., Gupta, R., Ahn, J.H., Chauhan, G.S. (2015). Synthesis of crosslinked lipase aggregates and their use in the synthesis of aspirin. Chem. Eng. Res. Des. 97: 159–164. doi:10.1016/j.cherd.2014.09.010.
  52. Jamie, A., Alshami, A.S., Maliabari, Z.O., Ateih, M.A. (2017). Development and Validation of a Kinetic Model for Enzymatic Hydrolysis Using Candida rugosa Lipase. J. Bioprocess. Biotech. 07: 1–7. doi:10.4172/2155-9821.1000297.
  53. Nyari, N.L.D., Fernandes, I.A., Bustamante-Vargas, C.E., Steffens, C., de Oliveira, D., Zeni, J., Rigo, E., Dallago, R.M. (2016). In situ immobilization of Candida antarctica B lipase in polyurethane foam support. J. Mol. Catal. B Enzym. 124: 52–61. doi:10.1016/j.molcatb.2015.12.003.