skip to main content

Highly Conductive and Soluble Polymer Synthesized by Copolymerization of Thiophene with Para-Methoxybenzaldehyde Using Clay Catalyst

1Laboratoire de Chimie des Polymères, Université Ahmed Ben Bella d’Oran1, BP 1524, El-Mnaouer, 31000 Oran, Algeria

2Faculté des Sciences de la Matière, Université Ibn Khaldoun de Tiaret, BP P78, Zaâroura, 14000 Tiaret, Algeria

3Laboratoire de Chimie des Matériaux, Université Ahmed Ben Bella d’Oran1, BP 1524, El-Mnaouer, 31000 Oran, Algeria

4 Centre Universitaire Ahmed Zabana de Relizane, BP 48000, Bourmadia, Relizane, Algeria

View all affiliations
Received: 17 Dec 2018; Revised: 10 Feb 2019; Accepted: 15 Feb 2019; Available online: 30 Apr 2019; Published: 1 Aug 2019.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

This present research focuses on the synthesis of a new conducting polymer based on the copolymerization of thiophene with para-methoxybenzaldehyde, using a clay as an ecologic catalyst named Maghnite-H+. The catalysis of the reaction by Maghnite-H+ can confer it important benefits, such as the green environment aspect. The reaction was carried out in dichloromethane as a solvent. The new copolymer obtained is a poly (heteroarylene methines) small bandgap polymers precursor. It can be considered as a useful model system for examining the impacts of π-conjugation length on the electronic properties of this type of conjugated polymers. The measurements of the electrical conductivity gave a value of order of 0.0120 W.cm-1, allowing its use in various important applications. The characteristics of the molecular structure and the thermal behavior of the conducting polymer obtained are also discussed using different methods of analysis, such as: proton nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, ultraviolet/visible spectroscopy, and thermal gravimetric analysis (TGA). 

Fulltext View|Download
Keywords: Clay; Maghnite-H+; Poly [(thiophene-2,5-diyl)-co-(para-methoxylbenzylidene)]; Band gap; electrical conductivity

Article Metrics:

  1. Aldridge, L. (1973). Cracking of n-hexane over LaX catalysts. Journal of Catalysis, 30:409-416
  2. Forni, L. (1873). Comparison of the Methods for the Determination of Surface Acidity of Solid Catalysts. Catalysis reviews. Science and engineering, 8: 65-115
  3. Kowalska, M., Cocke, D.L. (1998). Interactions of chloroanilines with natural and ion exchanged montmorillonites. Chemosphere, 36: 547–552
  4. Evangelou, V.P., Marsi, M., Vandiviere, M.M. (1999). Stability of Ca2+–, Cd2+–, Cu2+–[illite-humic] complexes and pH influence. Plant and Soil, 213: 63–74
  5. Ayat, M., Belbachir, M., Rahmouni, A. (2017). Synthesis of block copolymers consists on vinylidene chloride and α- Methylstyrene by cationic polymerization using an acid exchanged montmorillonite clay as heterogeneous catalyst (Algerian MMT). Journal of Molecular Structure, 1139: 381–389
  6. Belbachir, M., Bensaoula, A. (2001). US Patent. No 6, 274,527B1
  7. Kherroub, D.E., Belbachir, M., Lamouri, S. (2017). Synthesis and characterization of polyvinylmethylsiloxanes by cationic polymerization using a solid green catalyst. e-Polymers, 17: 1-11
  8. Benadda, M., Ferrahi, M.I., Belbachir, M. (2014). Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9: 201-206
  9. Cornelis, A., Laszlo, P. (1985). Clay-Supported Copper(II) and Iron(III) Nitrates: Novel Multi-Purpose Reagents for Organic Synthesis. Synthesis, 10: 909–918
  10. Kherroub, D.E., Belbachir, M., Lamouri, S. (2018). A new approach for the polymerization of tetraphenyltetramethylcyclotetrasiloxane by an environmentally friendly catalyst called Maghnite-H+. Green Processing and Synthesis, 7: 296–305
  11. Kherroub, D.E., Khodja, M., Belbachir, M., Lamouri, S., Bouhadjar, L., Boucherdoud, A. (2018). Maghnite-H+ as Inorganic Acidic Catalyst in Ring Opening Polymerization of Dodecamethylcyclohexasiloxane. Silicon, In press
  12. Kherroub, D.E., Belbachir, M., Lamouri, S., Chikh, K. (2018). Acid-activated bentonite Maghnite-H+ as a novel catalyst for the polymerization of decamethylcyclopentasiloxane. Bulletin of Materials Science, 41: 36-71
  13. Kherroub, D.E., Belbachir, M., Lamouri, S., Bouhadjar, L. (2017). Catalytic Activity of Maghnite-H+ in the Synthesis of Polyphenylmethylsiloxane under Mild and Solvent-free Conditions. Periodica Polytechnica Chemical Engineering, 62: 195-201
  14. Kherroub, D.E., Belbachir, M., Lamouri, S. (2018). Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+. Bulletin of Chemical Reaction Engineering & Catalysis, 13: 36-46
  15. Bouhadjar, L., Chikh, K., Kherroub, D.E. eds (2016). Synthèse de matériau organique semi-conducteur. European University Publishing
  16. Kherroub, D.E., Belbachir, M., Lamouri, S. (2017). Activated bentonite (Maghnite-H+) as green catalyst for ring-opening polymerization of 1,3,5,7-tetravinyltetramethyl-cyclotetrasiloxane. Research on Chemical Intermediates, 43: 5841–5856
  17. Balinta, R., Cassidy, N.J., Cartmell, S.H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10: 2341–2353
  18. Monteiro, D.R., Gorup, L.F., Takamiya, A.S., Ruvollo, A.C., de Camargo, E.R., Barbosa, D.B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34: 103–110
  19. Patil, S.L., Pawar, S.G., Chougule, M.A., Raut, B.T., Godse, P.R., Sen, S., Patil, V.B. (2012). Structural, Morphological, Optical, and Electrical Properties of PANi-ZnO Nanocomposites. International Journal of Polymeric Materials, 61: 809–820
  20. Chougule, M.A., Patil, S.L., Pawar, S.G., Raut, B.T., Godse, P.R., Sen, S., Patil, V.B. (2012). Development of nanostructured polyaniline-titanium dioxide gas sensors for ammonia recognition. Journal of Applied Polymer Science, 125: 1418–1424
  21. Wallace, G.G., Spinks, G.M., Kane-Maguire, L.A.P., Teasdale, P.R. eds. (2008). Conductive Electroactive Polymers: Intelligent Materials Systems. USA: Taylor & Francis
  22. Nikolaidis, M.G., Ray, S., Bennett, J.R., Easteal, A.J., Cooney, R.P. (2010). Electrospun Functionalized Polyaniline Copolymer-Based Nanofibers with Potential Application in Tissue Engineering. Macromolecular Bioscience, 10: 1424–1431
  23. Ma, G., Liang, X., Li, L., Qiao, R., Jiang, D., Ding, Y., Chen, H. (2014). Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere, 100: 146–151
  24. Nikolaidis, M.G., Bennett, J.R., Swift, S., Easteal, A.J., Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7: 4204-4209
  25. Borole, D.D., Kapadi, U.R., Mahulikar, P.P., Hundiwale, D.G. (2006). Electrochemical synthesis and characterization of conducting copolymer: Poly(o-aniline-co-o-toluidine). Materials Science, 60: 337-349
  26. Mu, S. (2006). Poly(aniline-co-o-aminophenol) nanostructured network: Electrochemical controllable synthesis and electrocatalysis. Electrochimica Acta, 51: 3434-3440
  27. Meghabar, R., Megherbi, A., Belbachir, M. (2003). Maghnite-H+, an ecocatalyst for cationic polymerization of N-vinyl-2-pyrrolidone. Polymer, 44: 4097-4100
  28. Kooli, F., Khimyak, Y. Z., Alshahateet, S. F., Chen, F. (2005). Effect of the Acid Activation Levels of Montmorillonite Clay on the Cetyltrimethylammonium Cations Adsorption. Langmuir, 21: 8717-8723
  29. Hashizum, H. (2002). Basal spacing of montmorillonite/amino acid complexes at different relative humidity. Clay Science, 11: 565-574
  30. Yahiaoui, A., Belbachir, M., Hachemaoui, A. (2003). An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin. International Journal of Molecular Sciences, 4: 548-561
  31. Boutaleb, N., Benyoucef, A., Salavagione, H.J. (2006). Electrochemical behaviour of conducting polymers obtained into clay-catalyst layers. An in situ Raman spectroscopy study. European Polymer Journal, 42: 733-789
  32. Yahiaoui, A., Belbachir, M., Soutif, J.C., Fontaine, L. (2005). Synthesis and structural analyses of poly (1,2-cyclohexene oxide) over solid acid catalyst. Materials Letters, 59(7): 759-767

Last update:

No citation recorded.

Last update:

No citation recorded.