Highly Conductive and Soluble Polymer Synthesized by Copolymerization of Thiophene with Para-Methoxybenzaldehyde Using Clay Catalyst

*Djamal Eddine Kherroub -  Laboratoire de Chimie des Polymères, Université Ahmed Ben Bella d’Oran1 , BP 1524, El-Mnaouer, 31000 Oran, Algeria
Larbi Bouhadjar -  Faculté des Sciences de la Matière, Université Ibn Khaldoun de Tiaret , BP P78, Zaâroura, 14000 Tiaret, Algeria
Bouhadjar Boukoussa -  Laboratoire de Chimie des Matériaux, Université Ahmed Ben Bella d’Oran1 , BP 1524, El-Mnaouer, 31000 Oran, Algeria
Abdelkader Rahmouni -  Laboratoire de Chimie des Polymères, Université Ahmed Ben Bella d’Oran1 , BP 1524, El-Mnaouer, 31000 Oran, Algeria
Khadidja Dahmani -  Centre Universitaire Ahmed Zabana de Relizane , BP 48000, Bourmadia, Relizane, Algeria
Mohammed Belbachir -  Laboratoire de Chimie des Polymères, Université Ahmed Ben Bella d’Oran1 , BP 1524, El-Mnaouer, 31000 Oran, Algeria
Received: 17 Dec 2018; Revised: 10 Feb 2019; Accepted: 15 Feb 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

This present research focuses on the synthesis of a new conducting polymer based on the copolymerization of thiophene with para-methoxybenzaldehyde, using a clay as an ecologic catalyst named Maghnite-H+. The catalysis of the reaction by Maghnite-H+ can confer it important benefits, such as the green environment aspect. The reaction was carried out in dichloromethane as a solvent. The new copolymer obtained is a poly (heteroarylene methines) small bandgap polymers precursor. It can be considered as a useful model system for examining the impacts of π-conjugation length on the electronic properties of this type of conjugated polymers. The measurements of the electrical conductivity gave a value of order of 0.0120 W.cm-1, allowing its use in various important applications. The characteristics of the molecular structure and the thermal behavior of the conducting polymer obtained are also discussed using different methods of analysis, such as: proton nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, ultraviolet/visible spectroscopy, and thermal gravimetric analysis (TGA). Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Clay; Maghnite-H+; Poly [(thiophene-2,5-diyl)-co-(para-methoxylbenzylidene)]; Band gap; electrical conductivity

Article Metrics:

  1. Aldridge, L. (1973). Cracking of n-hexane over LaX catalysts. Journal of Catalysis, 30:409-416.
  2. Forni, L. (1873). Comparison of the Methods for the Determination of Surface Acidity of Solid Catalysts. Catalysis reviews. Science and engineering, 8: 65-115.
  3. Kowalska, M., Cocke, D.L. (1998). Interactions of chloroanilines with natural and ion exchanged montmorillonites. Chemosphere, 36: 547–552.
  4. Evangelou, V.P., Marsi, M., Vandiviere, M.M. (1999). Stability of Ca2+–, Cd2+–, Cu2+–[illite-humic] complexes and pH influence. Plant and Soil, 213: 63–74.
  5. Ayat, M., Belbachir, M., Rahmouni, A. (2017). Synthesis of block copolymers consists on vinylidene chloride and α- Methylstyrene by cationic polymerization using an acid exchanged montmorillonite clay as heterogeneous catalyst (Algerian MMT). Journal of Molecular Structure, 1139: 381–389.
  6. Belbachir, M., Bensaoula, A. (2001). US Patent. No 6, 274,527B1
  7. Kherroub, D.E., Belbachir, M., Lamouri, S. (2017). Synthesis and characterization of polyvinylmethylsiloxanes by cationic polymerization using a solid green catalyst. e-Polymers, 17: 1-11.
  8. Benadda, M., Ferrahi, M.I., Belbachir, M. (2014). Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9: 201-206.
  9. Cornelis, A., Laszlo, P. (1985). Clay-Supported Copper(II) and Iron(III) Nitrates: Novel Multi-Purpose Reagents for Organic Synthesis. Synthesis, 10: 909–918.
  10. Kherroub, D.E., Belbachir, M., Lamouri, S. (2018). A new approach for the polymerization of tetraphenyltetramethylcyclotetrasiloxane by an environmentally friendly catalyst called Maghnite-H+. Green Processing and Synthesis, 7: 296–305.
  11. Kherroub, D.E., Khodja, M., Belbachir, M., Lamouri, S., Bouhadjar, L., Boucherdoud, A. (2018). Maghnite-H+ as Inorganic Acidic Catalyst in Ring Opening Polymerization of Dodecamethylcyclohexasiloxane. Silicon, In press.
  12. Kherroub, D.E., Belbachir, M., Lamouri, S., Chikh, K. (2018). Acid-activated bentonite Maghnite-H+ as a novel catalyst for the polymerization of decamethylcyclopentasiloxane. Bulletin of Materials Science, 41: 36-71.
  13. Kherroub, D.E., Belbachir, M., Lamouri, S., Bouhadjar, L. (2017). Catalytic Activity of Maghnite-H+ in the Synthesis of Polyphenylmethylsiloxane under Mild and Solvent-free Conditions. Periodica Polytechnica Chemical Engineering, 62: 195-201.
  14. Kherroub, D.E., Belbachir, M., Lamouri, S. (2018). Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+. Bulletin of Chemical Reaction Engineering & Catalysis, 13: 36-46.
  15. Bouhadjar, L., Chikh, K., Kherroub, D.E. eds (2016). Synthèse de matériau organique semi-conducteur. European University Publishing.
  16. Kherroub, D.E., Belbachir, M., Lamouri, S. (2017). Activated bentonite (Maghnite-H+) as green catalyst for ring-opening polymerization of 1,3,5,7-tetravinyltetramethyl-cyclotetrasiloxane. Research on Chemical Intermediates, 43: 5841–5856.
  17. Balinta, R., Cassidy, N.J., Cartmell, S.H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10: 2341–2353.
  18. Monteiro, D.R., Gorup, L.F., Takamiya, A.S., Ruvollo, A.C., de Camargo, E.R., Barbosa, D.B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34: 103–110.
  19. Patil, S.L., Pawar, S.G., Chougule, M.A., Raut, B.T., Godse, P.R., Sen, S., Patil, V.B. (2012). Structural, Morphological, Optical, and Electrical Properties of PANi-ZnO Nanocomposites. International Journal of Polymeric Materials, 61: 809–820.
  20. Chougule, M.A., Patil, S.L., Pawar, S.G., Raut, B.T., Godse, P.R., Sen, S., Patil, V.B. (2012). Development of nanostructured polyaniline-titanium dioxide gas sensors for ammonia recognition. Journal of Applied Polymer Science, 125: 1418–1424.
  21. Wallace, G.G., Spinks, G.M., Kane-Maguire, L.A.P., Teasdale, P.R. eds. (2008). Conductive Electroactive Polymers: Intelligent Materials Systems. USA: Taylor & Francis.
  22. Nikolaidis, M.G., Ray, S., Bennett, J.R., Easteal, A.J., Cooney, R.P. (2010). Electrospun Functionalized Polyaniline Copolymer-Based Nanofibers with Potential Application in Tissue Engineering. Macromolecular Bioscience, 10: 1424–1431.
  23. Ma, G., Liang, X., Li, L., Qiao, R., Jiang, D., Ding, Y., Chen, H. (2014). Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere, 100: 146–151.
  24. Nikolaidis, M.G., Bennett, J.R., Swift, S., Easteal, A.J., Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7: 4204-4209.
  25. Borole, D.D., Kapadi, U.R., Mahulikar, P.P., Hundiwale, D.G. (2006). Electrochemical synthesis and characterization of conducting copolymer: Poly(o-aniline-co-o-toluidine). Materials Science, 60: 337-349.
  26. Mu, S. (2006). Poly(aniline-co-o-aminophenol) nanostructured network: Electrochemical controllable synthesis and electrocatalysis. Electrochimica Acta, 51: 3434-3440.
  27. Meghabar, R., Megherbi, A., Belbachir, M. (2003). Maghnite-H+, an ecocatalyst for cationic polymerization of N-vinyl-2-pyrrolidone. Polymer, 44: 4097-4100.
  28. Kooli, F., Khimyak, Y. Z., Alshahateet, S. F., Chen, F. (2005). Effect of the Acid Activation Levels of Montmorillonite Clay on the Cetyltrimethylammonium Cations Adsorption. Langmuir, 21: 8717-8723.
  29. Hashizum, H. (2002). Basal spacing of montmorillonite/amino acid complexes at different relative humidity. Clay Science, 11: 565-574.
  30. Yahiaoui, A., Belbachir, M., Hachemaoui, A. (2003). An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin. International Journal of Molecular Sciences, 4: 548-561.
  31. Boutaleb, N., Benyoucef, A., Salavagione, H.J. (2006). Electrochemical behaviour of conducting polymers obtained into clay-catalyst layers. An in situ Raman spectroscopy study. European Polymer Journal, 42: 733-789.
  32. Yahiaoui, A., Belbachir, M., Soutif, J.C., Fontaine, L. (2005). Synthesis and structural analyses of poly (1,2-cyclohexene oxide) over solid acid catalyst. Materials Letters, 59(7): 759-767.