Evaluation of Simultaneous Saccharification and Fermentation of Oil Palm Empty Fruit Bunches for Xylitol Production

Khairul Hadi Burhan -  Microbiology and Bioprocess Technology Laboratory, Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia
*Made Tri Ari Penia Kresnowati -  Microbiology and Bioprocess Technology Laboratory, Department of Chemical Engineering, Institut Teknologi Bandung Department of Food Engineering, Institut Teknologi Bandung,, Indonesia
Tjandra Setiadi -  Microbiology and Bioprocess Technology Laboratory, Department of Chemical Engineering, Institut Teknologi Bandung Department of Food Engineering, Institut Teknologi Bandung, Center for Environmental Studies (PSLH), Institut Teknologi Bandung, Bandung, Indonesia
Received: 28 Nov 2018; Revised: 21 May 2019; Accepted: 24 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 92 20
Abstract

The biological process route of xylitol production from lignocellulosic materials, via enzymatic hydrolysis which is followed by fermentation, offers a more sustainable or greener process than the chemical process route. Both the enzymatic hydrolysis and the fermentation processes are conducted at moderate process condition and thus require less energy and chemicals. However, the process proceeds slower than the chemical one. In order to improve process performance, the enzymatic hydrolysis and the fermentation processes can be integrated as Simultaneous Saccharification and Fermentation (SSF) configuration. This paper discusses the evaluation of SSF configuration on xylitol production from Oil Palm Empty Fruit Bunches (OPEFB). To integrate two processes which have different optimum temperature, the performance of each process at various temperature was first evaluated. Later, SSF was evaluated at various hydrolysis and fermentation time at each optimum temperature. SSF showed better process performance than the separated hydrolysis and fermentation processes. The best result was obtained from configuration with 72 hours of prior hydrolysis followed by simultaneous hydrolysis and fermentation, giving yield of 0.08 g-xylitol/g-OPEFB. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Enzymatic hydrolysis; fermentation; OPEFB; process integration; xylitol

Article Metrics:

  1. Kresnowati, M., Mardawati, E., Setiadi, T. (2015). Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept. Modern Applied Science, 9(7): 206-213.
  2. Mohamad, N.L., Kamal, S.M.M., Mokhtar, M.N. (2014). Xylitol Biological Production: A Review of Recent Studies. Food Reviews International, 31: 74-89.
  3. Chen, X., Jiang, Z.-H., Chen, S., Qin, W. (2010). Microbial and Bioconversion Production of D-xylitol and Its Detection and Application. International Journal of Biological Sciences, 6(7): 834-844.
  4. Parajo, J.C., Dominguez, H., Dominguez, J.M. (1998). Biotechnological Production of Xylitol. Part 1: Interest of Xylitol and Fundamentals of Its Biosynthesis. Bioresources Technology, 65: 191-201.
  5. Badiei, M., Asim, N., Jahim, J.M., Sopian, K. (2014). Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia, 9: 170 – 174.
  6. Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., Wu, N. (2016). The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresource Technology, 200: 8-13.
  7. Loow, Y.-L., Wu, T.Y., Jahim, J.M., Mohammad, A.W., Teoh, W.H. (2016). Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23: 1491–1520.
  8. Kumar, S., Dheeran, P., Singh, S.P., Mishra, I.M., Adhikari, D.K. (2015). Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 38(1): 39–47.
  9. Dalli, S.S., Patel, M., Rakshit, S.K. (2017). Development and evaluation of poplar hemicellulose prehydrolysateupstream processes for the enhanced fermentative production ofxylitol. Biomass and Bioenergy, 105: 402-410.
  10. Fehér, A., Fehér, C., Rozbach, M., Barta, Z. (2017). Combined Approaches to Xylose Production from Corn Stover by Dilute Acid Hydrolysis. Chem. Biochem. Eng. Q, 31(1): 77-87.
  11. Ibrahim, M.M., El-Zawawy, W.K., Abdel-Fattah, Y.R., Soliman, N.A., Agblevor, F.A. (2011). Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydrate Polymers, 83(2): 720-726.
  12. Bali, G., Meng, X., Deneff, J.I., Sun, Q., Ragauskas, A.J. (2014). The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem, 00: 1-5.
  13. Falls, M., Holtzapple, M.T. (2011). Oxidative Lime Pretreatment of Alamo Switchgrass. Applied Biochemistry and Biotechnology, 165(2): 506-522.
  14. Harahap, B.M., Kresnowati, M. (2018). Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation. Biomass Conversion and Biorefinery, 8(2): 255–263.
  15. Buzała, K.P., Kalinowska, H., Małachowska, E., Przybysz, P. (2017). Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Science and Technology, 51(4): 873-885.
  16. Martı´n-Sampedro, R., Eugenio, M.E., Garcı´a, J.C., Lopez, F., Villar, J.C., Diaz, M.J. (2012). Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass and Bioenergy, 42: 97-106.
  17. Yadav, M., Mishra, D.K., Hwang, J.-S. (2012). Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Applied Catalysis A: General, 425-426: 110-116.
  18. Pham, T.N., Samikannu, A., Rautio, A.-R., Juhasz, K.L., Konya, Z., Warna, J., Kordas, K., Mikkola, J.-P. (2016). Catalytic Hydrogenation of D-Xylose Over Ru Decorated Carbon Foam Catalyst in a SpinChem(R) Rotating Bed
  19. Reactor. Topics in Catalysis, 59(13-14): 1165-1177.
  20. Nigam, P., Singh, D. (1995). Processes for Fermentative Production of Xylitol - a Sugar Substitute. Process Biochemistry, 30(2): 117-124.
  21. Mardawati, E., Andoyo, R., Syukra, K.A., Kresnowati, M., Bindar, Y. (2017). Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast. IOP Conf. Series: Earth and Environmental Science, 141: 1-11.
  22. Parajo, J.C., Domi'nguez, H., Domi'nguez, J.M. (1996). Xylitol from wood: study of some operational strategies. Food Chemistry, 57(4): 531-535.
  23. Wen, X., Sidhu, S., Horemans, S.K.C., Sooksawat, N., Harner, N.K., Bajwa, P.K., Yuan, Z., Lee, H. (2016). Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037. Journal of Bioscience and Bioengineering, 121(6): 631-637.
  24. Hernández-Pérez, A.F., Costa, I.A.L., Silva, D.D.V., Dussán, K.J., Villela, T.R., Canettieri, E.V., Jr., J.A.C., Neto, T.G.S., Felipe, M.G.A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresources Technology, 200: 1085-1088.
  25. Winkelhausen, E., Kuzmanova, S. (1998). Review: Microbial Conversion of D-Xylose to Xylitol. Journal of Fermentation and Bioengineering, 86(1): 1-14.
  26. Tamburini, E., Costa, S., Marchetti, M.G., Pedrini, P. (2015). Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis. Biomolecules, 5: 1979-1989.
  27. Sampaio, F.b.C., Mantovani, H.r.C., Passos, F.J.V., Moraes, C.l.A.d., Converti, A., Passos, F.v.M.L. (2005). Bioconversion of D-xylose to xylitol by Debaryomyces hansenii UFV-170: Product formation versus growth. Process Biochemistry, 40: 3600-3606.
  28. BPS-Statistics Indonesia. (2015). Statistik Kelapa Sawit Indonesia (Indonesia Oil Palm Statistics) 1978-9947, 5504003: 69-80.
  29. Sung, C.T.B., Joo, G.K., Kamarudin, K.N. (2010). Physical Changes to Oil Palm Empty Fruit Bunches (EFB) and EFB Mat (Ecomat) during Their Decomposition in the Field. Pertanika J. Trop. Agric. Sci., 33(1)(1): 39-44.
  30. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L. (2004). Biotechnological production of xylitol from oil palm empty fruit bunch, a lignocellulosic waste. In The 4th Annual Seminar of National Science Fellowship, 619-624. Malaysia.
  31. Mohamad, N.L., Kamal, S.M.M., Gliew, A. (2009). Effects of Temperature and pH on Xylitol Recovery from Oil Palm Empty Fruit Bunch Hydrolysate by Candida tropicalis. Journal of Applied Sciences, 9(17): 3192-3195.
  32. Mardawati, E., Wira, D.W., Kresnowati, M., Purwadi, R., Setiadi, T. (2014). Microbial Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate:The Effect of Glucose Concentration. Journal of the Japan Institute of Energy, 94: 769-774.
  33. Liu, Z.-H., Chen, H.-Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresources Technology, 201: 15-26.
  34. Kádár, Z., Szengyel, Z., Réczey, K. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products, 20: 103-110.
  35. Saxena, A., Garg, S.K., Verma, J. (1992). Simultaneous Saccharification and Fermentation of Waste Newspaper to Ethanol. Bioresources Technology, 42: 13-15.
  36. Krishna, S.H., Prasanthi, K., Chowdary, G.V., Ayyanna, C. (1998). Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol. Process Biochemistry, 33(8): 825-830.
  37. Saha, B.C., Nichols, N.N., Qureshi, N., Cotta, M.A. (2011). Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol, 92: 865-874.
  38. Vintilă, T., Vintilă, D., Neo, S., Tulcan, C., Hadaruga, N. (2011). Simultaneous hydrolysis and fermentation of lignocellulose versus separated hydrolysis and fermentation for ethanol production. Romanian Biotechnological Letters, 16(1): 106-112.
  39. Mardawati, E., Werner, A., Bley, T., Kresnowati, M., Setiadi, T. (2014). The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose. Journal of the Japan Institute of Energy, 93: 973-978.
  40. Bailey, M.J., Biely, P., Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23: 257-271.
  41. Kresnowati, M., Ardina, A., Oetomo, V. (2012). From Palm Oil Waste to Valuable Products: Microbial Production of Xylitol. In 19th Regional Symposium of Chemical Engineering, Indonesia, Bali.
  42. Leustean, I., Georgesu, L., Bahrim, G. (2010). Preliminary Study For Optimization of Enzymatic Hydrolysis of Waste Cellulosic Materials. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 35(1): 27-33.
  43. Fenila, F. and Shastri, Y. (2016). Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resource-Efficient Technologies, 2: S96-S104.
  44. Sampaio, F.b.C., Chaves-Alves, V.n.M., Converti, A., Passos, F.v.M.L., Coelho, J.L.C. (2008). Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresources Technology, 99: 502-508.
  45. Carvalheiro, F., Duarte, L.C., Lopes, S., Parajó, J.C., Pereira, H., G´ırio, F.M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40: 1215-1223.
  46. Prakash, G., Varma, A.J., Prabhune, A., Shouche, Y., Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresources Technology, 102: 3304-3308.
  47. de Albuquerque, T.L., Gomes, S.D.L., Marques Jr., J.E., daSilva Jr., I.J., Rocha,M.V.P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 255: 33-40.
  48. Kamal, S.M.M., Mohamad, N.L., Abdullah, A.G.L., Abdullah, N. (2011). Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Science, 1: 908-913.
  49. Misra, S., Raghuwanshi, S., Saxena, R.K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92: 1596-1601.