skip to main content

Evaluation of Simultaneous Saccharification and Fermentation of Oil Palm Empty Fruit Bunches for Xylitol Production

1Microbiology and Bioprocess Technology Laboratory, Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia

2Department of Food Engineering, Institut Teknologi Bandung, Indonesia

3Center for Environmental Studies (PSLH), Institut Teknologi Bandung, Bandung, Indonesia

Received: 28 Nov 2018; Revised: 21 May 2019; Accepted: 24 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The biological process route of xylitol production from lignocellulosic materials, via enzymatic hydrolysis which is followed by fermentation, offers a more sustainable or greener process than the chemical process route. Both the enzymatic hydrolysis and the fermentation processes are conducted at moderate process condition and thus require less energy and chemicals. However, the process proceeds slower than the chemical one. In order to improve process performance, the enzymatic hydrolysis and the fermentation processes can be integrated as Simultaneous Saccharification and Fermentation (SSF) configuration. This paper discusses the evaluation of SSF configuration on xylitol production from Oil Palm Empty Fruit Bunches (OPEFB). To integrate two processes which have different optimum temperature, the performance of each process at various temperature was first evaluated. Later, SSF was evaluated at various hydrolysis and fermentation time at each optimum temperature. SSF showed better process performance than the separated hydrolysis and fermentation processes. The best result was obtained from configuration with 72 hours of prior hydrolysis followed by simultaneous hydrolysis and fermentation, giving yield of 0.08 g-xylitol/g-OPEFB. 

Fulltext View|Download
Keywords: Enzymatic hydrolysis; fermentation; OPEFB; process integration; xylitol
Funding: Indonesian Fund Management Board of Oil Palm Plantation (BPDP Sawit)

Article Metrics:

  1. Kresnowati, M., Mardawati, E., Setiadi, T. (2015). Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept. Modern Applied Science, 9(7): 206-213
  2. Mohamad, N.L., Kamal, S.M.M., Mokhtar, M.N. (2014). Xylitol Biological Production: A Review of Recent Studies. Food Reviews International, 31: 74-89
  3. Chen, X., Jiang, Z.-H., Chen, S., Qin, W. (2010). Microbial and Bioconversion Production of D-xylitol and Its Detection and Application. International Journal of Biological Sciences, 6(7): 834-844
  4. Parajo, J.C., Dominguez, H., Dominguez, J.M. (1998). Biotechnological Production of Xylitol. Part 1: Interest of Xylitol and Fundamentals of Its Biosynthesis. Bioresources Technology, 65: 191-201
  5. Badiei, M., Asim, N., Jahim, J.M., Sopian, K. (2014). Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia, 9: 170 – 174
  6. Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., Wu, N. (2016). The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresource Technology, 200: 8-13
  7. Loow, Y.-L., Wu, T.Y., Jahim, J.M., Mohammad, A.W., Teoh, W.H. (2016). Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23: 1491–1520
  8. Kumar, S., Dheeran, P., Singh, S.P., Mishra, I.M., Adhikari, D.K. (2015). Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 38(1): 39–47
  9. Dalli, S.S., Patel, M., Rakshit, S.K. (2017). Development and evaluation of poplar hemicellulose prehydrolysateupstream processes for the enhanced fermentative production ofxylitol. Biomass and Bioenergy, 105: 402-410
  10. Fehér, A., Fehér, C., Rozbach, M., Barta, Z. (2017). Combined Approaches to Xylose Production from Corn Stover by Dilute Acid Hydrolysis. Chem. Biochem. Eng. Q, 31(1): 77-87
  11. Ibrahim, M.M., El-Zawawy, W.K., Abdel-Fattah, Y.R., Soliman, N.A., Agblevor, F.A. (2011). Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydrate Polymers, 83(2): 720-726
  12. Bali, G., Meng, X., Deneff, J.I., Sun, Q., Ragauskas, A.J. (2014). The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem, 00: 1-5
  13. Falls, M., Holtzapple, M.T. (2011). Oxidative Lime Pretreatment of Alamo Switchgrass. Applied Biochemistry and Biotechnology, 165(2): 506-522
  14. Harahap, B.M., Kresnowati, M. (2018). Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation. Biomass Conversion and Biorefinery, 8(2): 255–263
  15. Buzała, K.P., Kalinowska, H., Małachowska, E., Przybysz, P. (2017). Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Science and Technology, 51(4): 873-885
  16. Martı´n-Sampedro, R., Eugenio, M.E., Garcı´a, J.C., Lopez, F., Villar, J.C., Diaz, M.J. (2012). Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass and Bioenergy, 42: 97-106
  17. Yadav, M., Mishra, D.K., Hwang, J.-S. (2012). Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Applied Catalysis A: General, 425-426: 110-116
  18. Pham, T.N., Samikannu, A., Rautio, A.-R., Juhasz, K.L., Konya, Z., Warna, J., Kordas, K., Mikkola, J.-P. (2016). Catalytic Hydrogenation of D-Xylose Over Ru Decorated Carbon Foam Catalyst in a SpinChem(R) Rotating Bed
  19. Reactor. Topics in Catalysis, 59(13-14): 1165-1177
  20. Nigam, P., Singh, D. (1995). Processes for Fermentative Production of Xylitol - a Sugar Substitute. Process Biochemistry, 30(2): 117-124
  21. Mardawati, E., Andoyo, R., Syukra, K.A., Kresnowati, M., Bindar, Y. (2017). Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast. IOP Conf. Series: Earth and Environmental Science, 141: 1-11
  22. Parajo, J.C., Domi'nguez, H., Domi'nguez, J.M. (1996). Xylitol from wood: study of some operational strategies. Food Chemistry, 57(4): 531-535
  23. Wen, X., Sidhu, S., Horemans, S.K.C., Sooksawat, N., Harner, N.K., Bajwa, P.K., Yuan, Z., Lee, H. (2016). Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037. Journal of Bioscience and Bioengineering, 121(6): 631-637
  24. Hernández-Pérez, A.F., Costa, I.A.L., Silva, D.D.V., Dussán, K.J., Villela, T.R., Canettieri, E.V., Jr., J.A.C., Neto, T.G.S., Felipe, M.G.A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresources Technology, 200: 1085-1088
  25. Winkelhausen, E., Kuzmanova, S. (1998). Review: Microbial Conversion of D-Xylose to Xylitol. Journal of Fermentation and Bioengineering, 86(1): 1-14
  26. Tamburini, E., Costa, S., Marchetti, M.G., Pedrini, P. (2015). Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis. Biomolecules, 5: 1979-1989
  27. Sampaio, F.b.C., Mantovani, H.r.C., Passos, F.J.V., Moraes, C.l.A.d., Converti, A., Passos, F.v.M.L. (2005). Bioconversion of D-xylose to xylitol by Debaryomyces hansenii UFV-170: Product formation versus growth. Process Biochemistry, 40: 3600-3606
  28. BPS-Statistics Indonesia. (2015). Statistik Kelapa Sawit Indonesia (Indonesia Oil Palm Statistics) 1978-9947, 5504003: 69-80
  29. Sung, C.T.B., Joo, G.K., Kamarudin, K.N. (2010). Physical Changes to Oil Palm Empty Fruit Bunches (EFB) and EFB Mat (Ecomat) during Their Decomposition in the Field. Pertanika J. Trop. Agric. Sci., 33(1)(1): 39-44
  30. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L. (2004). Biotechnological production of xylitol from oil palm empty fruit bunch, a lignocellulosic waste. In The 4th Annual Seminar of National Science Fellowship, 619-624. Malaysia
  31. Mohamad, N.L., Kamal, S.M.M., Gliew, A. (2009). Effects of Temperature and pH on Xylitol Recovery from Oil Palm Empty Fruit Bunch Hydrolysate by Candida tropicalis. Journal of Applied Sciences, 9(17): 3192-3195
  32. Mardawati, E., Wira, D.W., Kresnowati, M., Purwadi, R., Setiadi, T. (2014). Microbial Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate:The Effect of Glucose Concentration. Journal of the Japan Institute of Energy, 94: 769-774
  33. Liu, Z.-H., Chen, H.-Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresources Technology, 201: 15-26
  34. Kádár, Z., Szengyel, Z., Réczey, K. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products, 20: 103-110
  35. Saxena, A., Garg, S.K., Verma, J. (1992). Simultaneous Saccharification and Fermentation of Waste Newspaper to Ethanol. Bioresources Technology, 42: 13-15
  36. Krishna, S.H., Prasanthi, K., Chowdary, G.V., Ayyanna, C. (1998). Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol. Process Biochemistry, 33(8): 825-830
  37. Saha, B.C., Nichols, N.N., Qureshi, N., Cotta, M.A. (2011). Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol, 92: 865-874
  38. Vintilă, T., Vintilă, D., Neo, S., Tulcan, C., Hadaruga, N. (2011). Simultaneous hydrolysis and fermentation of lignocellulose versus separated hydrolysis and fermentation for ethanol production. Romanian Biotechnological Letters, 16(1): 106-112
  39. Mardawati, E., Werner, A., Bley, T., Kresnowati, M., Setiadi, T. (2014). The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose. Journal of the Japan Institute of Energy, 93: 973-978
  40. Bailey, M.J., Biely, P., Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23: 257-271
  41. Kresnowati, M., Ardina, A., Oetomo, V. (2012). From Palm Oil Waste to Valuable Products: Microbial Production of Xylitol. In 19th Regional Symposium of Chemical Engineering, Indonesia, Bali
  42. Leustean, I., Georgesu, L., Bahrim, G. (2010). Preliminary Study For Optimization of Enzymatic Hydrolysis of Waste Cellulosic Materials. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 35(1): 27-33
  43. Fenila, F. and Shastri, Y. (2016). Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resource-Efficient Technologies, 2: S96-S104
  44. Sampaio, F.b.C., Chaves-Alves, V.n.M., Converti, A., Passos, F.v.M.L., Coelho, J.L.C. (2008). Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresources Technology, 99: 502-508
  45. Carvalheiro, F., Duarte, L.C., Lopes, S., Parajó, J.C., Pereira, H., G´ırio, F.M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40: 1215-1223
  46. Prakash, G., Varma, A.J., Prabhune, A., Shouche, Y., Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresources Technology, 102: 3304-3308
  47. de Albuquerque, T.L., Gomes, S.D.L., Marques Jr., J.E., daSilva Jr., I.J., Rocha,M.V.P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 255: 33-40
  48. Kamal, S.M.M., Mohamad, N.L., Abdullah, A.G.L., Abdullah, N. (2011). Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Science, 1: 908-913
  49. Misra, S., Raghuwanshi, S., Saxena, R.K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92: 1596-1601

Last update: 2021-07-28 00:50:11

No citation recorded.

Last update: 2021-07-28 00:50:11

No citation recorded.